Swabian instruments

Time Tagger User Manual
Release 1.2.3-local-build

Swabian Instruments

Sep 01, 2022

CONTENTS

1 Getting Started 1
1.1 Web Application e e 1

1.2 Python . . . o o e e e 2

1.3 LabVIEW (via.NET) e 4

1.4 Matlab (wrapper for NET) o e e e e e 4

1.5 Wolfram Mathematica (via NET) e e 4

1.6 NET . . . e 4

L7 CH e e 4

L8 Gt o e 5

2 Installation instructions 7
2.1 Requirements oL e e e e e e e e e e e e 7
2.1.1 Operating System o e e e e e e e e e e e e 7

2.1.2 Installation 7

2.1.3 Web Application e e e e e e e 7

2.14 Programming Examples L e 7

2.1.5 0 LANUX . .o e e e e e e e e e e 7

3 Tutorials 9
3.1 Confocal Fluorescence Microscope o v it i i vttt 9
3.1.1 Time Tagger configuration e 10

3.1.2 Intensity scanning miCroSCOPE o v v v v i i e e e e e e e e e e 11

3.1.3 Fluorescence Lifetime Microscope v v v i i i v i i e e e e 12

3.1.4 Alternative pixel trigger formats 13

3.2 Remote Time Tagger with Python 16
3.2.1 Sharing a Time Tagger with Network Time Tagger 16

3.2.2 Remote control of a Time Tagger with Pyro, 17

3.23 Remote procedure call e e e e e 18

324 Initial SEtUP e 18

325 Minimalexample L. e e e e e e 18

32.6 Creatingthe Time Tagger i i 19

3.277 Measurements and virtual channels L oL o oo 21

3.2.8 Workingexample e e 22

329 Whatisnext? 24

4 Synchronizer 25
4.1 OVEIVIBW .« . vttt e e e e e e e e e 25
42 ReqUITEMENTS v v v v e 25

43 Cableconnections 25
4.3.1 Usinganexternal referenceclock oo oo 27

4.4 Software and channel numberingo
4.4.1 Incomplete cable cONNECtionS v v i e e e e e e e e
442 Bufferoverflows L. e
45 Limitations L e e e e e e e e e e e e e e e
4.5.1 Conditional filter e
452 Internaltestsignal
4.6 Status LEDs and troubleshooting e e e
4.7 Synchronizer with only one Time Tagger i i i ittt
47.1 Longtermclockstability
47.2 Absolute clock timestamps Lo e e e
Hardware
5.1 Inputchannels e
5.1.1 Electrical characteristics o . e e e e e
5.1.2 HighResolution Mode e
52 Dataconnection e e e e e e e
53 LEDS . . . o e e
5.3.1 Time Tagger X o o o o i e e e e e e e e e e e
5.3.2 Time Tagger Ultra and Time Tagger 20 oo
5.3.3 Additional LEDs on Time Tagger X and Time Tagger Ultra
54 Testsignalo e e e e
5.5 Virtualchannels L e
5.6 Syntheticinputdelay L e e e e e
5.7 Syntheticdead time
5.8 Conditional Filter e
5.9 Binequilibration e
500 Overflows . . . o o oL e e
5.11 External Clock Input - Time Tagger Ultra and Time Tagger X only
5.12 Synchronization signals - Time Tagger Ultraonly
5.13 General purpose 10 (GPIO) - Time Tagger Ultraonly
5.14 General purpose 10 (GPIO) - Time Tagger 20only
Software Overview
6.1 Webapplication L e e e e
6.2 Precompiled libraries and high-level language bindings,
6.3 CH++APL . .
Application Programmer’s Interface
7.1 Examples L e e e e e
7.1.1 Measuring cross-correlation e e e e e
7.1.2 Usingvirtual channels e
7.1.3 Using multiple Time Taggers e
7.1.4 Using Time Taggerremotely oo i ittt e e
7.2 The TimeTagger Library o o e
7.2.1 Unitsof measurement e e e e e e
7.22 Channel numbers e e e e
7.23 Unusedchannels e
724 COnstantS v vt i e e e e e e e e e e e e e e e e
7.2.5 Enumerationso e e e e e e e e e e
7.2.6 Functions e e e
7.3 TimeTagger classes o o i i e e e e e e e e e e e e
7.3.1 General Time Tagger features e
7.3.2 Time Tagger hardware e e
7.3.3 The TimeTaggerVirtual class

31
31
31
31
32
32
32
33
33
34
34
34
34
34
35
35
35
36
36
36

37
37
37
37

8

9

7.3.4 The TimeTaggerNetwork class i o i i it e i e e e e

7.3.5 Additional Classes e e e e e e e e e e e e e e
7.4 Virtual Channels e e e e e e e e e
7.4.1 Available virtual channels e
742 Commonmethods. e e e e e
743 Combiner e e e e e e e e
744 CoinCidence e e e e e e e e e e e e e
7.4.5 CoinCidences o i e e e e e e e e e e e e e e e e e
7.4.6 FrequencyMultiplier e
7477 GatedChannel e e e e e
7.4.8 DelayedChannel e
7.4.9 ConstantFractionDiscriminator e e e
7.4.10 EventGenerator i i i e
7411 TriggerOnCountrate oo ittt et e e e e e
7.5 Measurement CIasSes e e e e e e e e e
7.5.1 Available measurement classes e e
752 CommonmethodS. e e e e e
7.53 Eventcounting e e e e e e e e e e e e e
7.5.4 Time histograms L L e e e e e e e e e e e e e
7.5.5 Fluorescence-lifetime imaging (FLIM)
7.5.6 Frequency analySisS L e e
7.577 Time-tag-streaming« . L oL e e e e e e e e e e e e
7.5.8 Helperclasses o v v v v i i e e e e e e e e e e e
7.5.9 Custom Measurements v v v it e e e e e e e e e e e e e e e e e e
In Depth Guides
8.1 Conditional Filter e e e e e e e
8.1.1 Example configurations Lo e e e e e
8.1.2 Understanding the filtering mechanism oL .
8.1.3 Setup of the Conditional Filter
8.2 Raw Time-Tag-Stream acCess« o v v v v v it e e e e e e e e e e e e e e
8.2.1 Dumping and posSt-processing it e e e e e e e e e
8.2.2 On-the-fly processing o o i i e e e e e e e
8.3 Synchronization of the Time Tagger pipeline
Linux
9.1 Supported distributions L L e e e e e e e e e e
9.2 Installation e e e e e e e e e e e
03 Knownissues i e e e e e e e e e e e e
9.4 Time Tagger with Python
9.5 Time Tagger with C++ L L e e e e e e e e e e e
9.6 Generalremark L e e
10 Frequently Asked Questions
10.1 How to detect falling edges of apulse? e
10.2 What value should I pass to an optional channel?
10.3 Is it possible to use the same channel in multiple measurement classes?
10.4 How do I choose a binwidth for a histogram?
11 Usage Statistics Collection
11.1 Contents of the usage statisticsdata
11.2 Waysofcontrol e e

12 Revision History

12.1 V2.12.0-01.09.2022 o oL

119
119
119
121
124
125
125
125
126

127
127
127
127
127
128
128

129
129
129
129
130

131
131
131

133
133

122 V2.11.0-22.04.2022 oo e e 134

12.3 V2.10.6 - 16.03.2022 e e e e e e 136
12.4 V2.10.4 -23.02.2022 o L e e e e e e e 136
12.5 V2.10.2-31.12.2021 . . . o o o e e e e e e e 136
126 V2.10.0-22.12.2021 . . . o o e e e e e e 136
12.7 V2.9.0-07.00.2021 e e e e 138
12.8 V2.8.4-04.052021 o . e e e 139
12.9 V2.8.2-26.04.2021 e e e e e 139
12.10 V2.8.0-29.03.2021 e e e e e e e e e 140
12.11 V2.7.6 - 26.04.2021 e e e 141
12.12 V2.7.4 - 19.04.2021 o e e e e 141
12.13 V2.7.2-22.12.2020 . . . o o e e e e e e e e 141
12.14 V2.7.0 - 01.10.2020 o o e e e e e e e e e e 142
12.15 V2.6.10 - 07.09.2020 o e e e e e e e 143
12.16 V2.6.8 - 21.08.2020 e 143
12.17 V2.6.6 - 10.07.2020 o o e e e e 144
12,18 V2.6.4 - 27.05.2020 e e e e e e 145
12.19 V2.6.2-10.03.2020 o e e e e e e e 146
12.20 V2.6.0-23.12.2019 o o e e e e e 147
1221 V2.4.4-29.07.2019 e 149
1222 V2.4.2-12.052019 e e 150
12.23 V2.4.0-10.04.2019 e e e e e 150
1224 V224 -29.01.2019 e e 151
1225 V222 - 13.11.2018 o e e e e e e e 151
1226 V2.2.0-07.11.2018 e e e e e e e e e e e 151
1227 V2.1.6 - 17.05.2018 o e 152
1228 V2.1.4 - 21.03.2018 e e e e e e 152
12.29 V2.1.2 - 14.03.2018 o o e e 152
12.30 V2.1.0 - 06.03.2018 o o e e e e e e e 152
12.31 V2.0.4-01.02.2018 o o e e e e e e 152
1232 V2.0.2 - 17.01.2018 o e 153
12.33 V2.0.0 - 14.12.2017 . . . o o e e e e e e 153
12.34 VI1.0.20 - 24.10.2017 o o e e e e e e e 153
1235 V1.0.6 - 16.03.2017 o o e e e e e e e 154
1236 V1.0.4-24.11.2016 o o e e e e e e e e e e 155
12.37 V1.0.2 -28.07.2016 e e e 156
1238 VI.0.0 . . o e e e 156
12.39 Channel Number SchemaOand 1 i 156
Index 157

CHAPTER
ONE

GETTING STARTED

The following section describes how to get started with your Time Tagger.

First, please install the most recent driver/software which includes a graphical user interface (Web Application) and
libraries and examples for C++, Python, .NET, C#, LabVIEW, Matlab, and Mathematica.

Time Tagger software download

https://www.swabianinstruments.com/time-tagger/downloads/

You are highly encouraged to read the sections below to get started with the graphical user interface and/or the Time
Tagger programming libraries.

In addition, information about the hardware, API, etc. can be found in the menu bar on the left and on our main website:
https://www.swabianinstruments.com/time-tagger/.

How to get started with Linux can be found in the Linux section.

1.1 Web Application

The Web Application is the provided GUI to show the basic functionality and can be used to do quick measurements.
1. Download and install the most recent Time Tagger software from our downloads site.
2. Start the Time Tagger Application from the Windows start menu.

3. The Web Application should show up in your browser.

Note: The Web Application has the port 50120 as default port. If this collides with another application you can
change the port with passing the argument TimeTaggerServer.exe -p 50120.

The Web Application allows you to work with your Time Tagger interactively. We will now use the Time Tagger’s
internal test signal to measure a cross correlation between two channels as an example.

1. Click Add TimeTagger, click Init (select resolution if available) on any of the available Time Taggers

2. Click Create measurement, look for Bidirectional Histogram (Class: Correlation) and click
Create next to it.

3. Select Rising edge 1 for Channel 1 and Rising edge 2 for Channel 2.
4. Set Binwidth to 10 ps and leave Number of data points at 1000, click Initialize.

The Time Tagger is now acquiring data, but it does not yet have a signal. We will now enable its internal test signal.

https://www.swabianinstruments.com/time-tagger/downloads/
https://www.swabianinstruments.com/time-tagger/
https://www.swabianinstruments.com/time-tagger/downloads/

Time Tagger User Manual, Release 1.2.3-local-build

Ll

On the top left, click on the settings wheel next to Time Tagger.
On the far right, check Test signal for channels 1 and 2, click Ok.
A Gaussian peak should be displayed. You can zoom in using the controls on the plot.

The detection jitter of a single channel is 1/1/2 times the standard deviation of this two-channel measurement
(the FWHM of the Gaussian peak is 2.35 times its standard deviation).

You have just verified the time resolution (detection jitter) of your Time Tagger.

Where to go from here.. .

To learn more about the Time Tagger you are encouraged to consult the following resources.

L.
2.

3.

Check out the Application Programmer’s Interface chapter.

Check out the following sections to get started using the Time Tagger software library in the programming
language of your choice.

Study the code examples in the .\examples\<language>\ folders of your Time Tagger installation.

1.2 Python

4.
5.

. Make sure that your Time Tagger device is connected to your computer and the Time Tagger Web Application

(especially the server window) is closed.
Make sure the Time Tagger software and a Python distribution (we recommend Anaconda) are installed.

Open a command shell and navigate to the .\examples\python\1-Quickstart folder in your Time Tagger
installation directory

Start an ipython shell with plotting support by entering ipython --pylab

Run the hello_world.py script by entering run hello_world

The hello_world executes a simple yet useful measurement that demonstrates many essential features of the Time Tagger
programming interface:

1.
2.
3.
4.

5.

Connect your Time Tagger
Start the built-in test signal (~0.8 MHz square wave) and apply it to channels 1 and 2
Control the trigger level of your inputs - although it is not necessary here

Initialize a standard measurement (Correlation) in order to find the delay of the test signal between channel 1
and 2

How to control the delay of different inputs programmatically.

You are encouraged to open and read the hello_world.py file in an editor to understand what it is doing. With this
basic knowledge, you can explore the other examples in the 1-Quickstart folder:

Chapter 1. Getting Started

https://www.anaconda.com/

Time Tagger User Manual, Release 1.2.3-local-build

No.

| Topic

| Classes & Methods

Basic software control (folder /-basic_software_control)

1-A Create a mea- | createTimeTagger (), Counter.getData(),
surement Counter.getIndex()
Count rate | Counter
trace

1-B Start & stop | Countrate, start(), stop(), startFor()
measure-
ments

1-C Synchronize SynchronizedMeasurements
measure-
ments
Use different | Correlation, Histogram,
histograms StartStop, HistogramLogBins

1-D Virtual Chan- | DelayedChannel, Coincidence, GatedChannel
nels

1-E Logging setLogger()
errors

1-F (External) TimeTaggerBase.setSoftwareClock(),
software FrequencyStability
clock

Controlling the hardware (folder 2-controlling-the-hardware)

2-A Get hardware | scanTimeTagger (), TimeTagger.getSerial(),
information TimeTagger.getModel (), TimeTagger.getSensorData(),
TimeTaggerBase.getConfiguration()
2-B The input | TimeTagger.setTriggerLevel (), TimeTagger.getDACRange ()
trigger level
2-C Filter tags on | TimeTagger.setConditionalFilter(),
hardware TimeTagger.setEventDivider ()
2-D Control input | TimeTaggerBase.setInputDelay(), Histogram2D
delays
2-E Overflows TimeTaggerBase.getOverflows(),
TimeTagger.setTestSignalDivider()
2-F HighRes createTimeTagger (), TimeDifferences
mode
Dump and re-analyze time-tags (folder 3-dump-and-reanalyze-time-tags)
3-A Dump tags by | Fileliriter
FileWriter
3-B The Time | createTimeTaggerVirtual(), TimeTaggerVirtual
Tagger Vir-
tual

Working with raw time-tags (folder 4-working-with-raw-time-tags)

4-A The Fil- | FileReader, TimeTagStreamBuffer
eReader

4-B Streaming TimeTagStream
raw time-tags

4-C Custom Mea- | CustomMeasurement

surements

More details about the software interface are covered by the API documentation in the subsequent section

1.2. Python

Time Tagger User Manual, Release 1.2.3-local-build

1.3 LabVIEW (via .NET)

A set of examples is provided in .\examples\LabVIEW\ for LabVIEW 2014 and higher (32 and 64 bit).

1.4 Matlab (wrapper for .NET)

Wrapper classes are provided for Matlab so that native Matlab variables can be used.

The Time Tagger toolbox is automatically installed during the setup. If TimeTagger is not available in your Matlab
environment try to reinstall the toolbox from .\driver\Matlab\TimeTaggerMatlab.mltbx.

The following changes in respect to the .NET library have been made:
* static functions are available through the TimeTagger class

« all classes except for the TimeTagger class itself have a TT prefix (e.g. TTCountrate) to prevent conflict with
any variables/classes in your Matlab environment

An example of how to use the Time Tagger with Matlab can be found in .\examples\Matlab\.

1.5 Wolfram Mathematica (via .NET)

Time Tagger functionality is provided to Mathematica via .NET interoperability interface. Please take a look at the
examples in .\examples\Mathematica\.

1.6 .NET

We provide a .NET class library (32, 64 bit and CIL) for the TimeTagger which can be used to access the TimeTagger
from many high-level languages.

The following are important to note:
e Namespace: SwabianInstruments.TimeTagger

¢ the corresponding library . \driver\xxx\SwabianInstruments.TimeTagger.dll isregistered in the Global
Assembly Cache (GAC)

e static functions (e.g. to create an instance of a TimeTagger) are accessible via SwabianInstruments.
TimeTagger.TT

1.7 C#

A sample Visual Studio C# project provided in the . \examples\csharp\Quickstart directory covers the basics of
how to use the Time Tagger .NET API. An example of creating ‘custom measurements’ is also included.

Please copy the project folder to a directory within the user environment such that files can be written within the
directory.

An ‘Example Suite’ is provided in the .\examples\csharp\ExampleSuite directory. ‘Example Suite’ is an inter-
active application that demonstrates various measurements that can be performed with the TimeTagger. Reference
source code to setup and plot (with OxyPlot) each measurement is also provided within the application. Additionally,

4 Chapter 1. Getting Started

Time Tagger User Manual, Release 1.2.3-local-build

the application contains examples for creating and using ‘Virtual channels’, ‘Filtering’ and ‘Accessing the raw time
tags’.

Note: Running the Example Suite requires ‘. NET Core 3.1 Desktop Runtime (v3.1.10)’.

1.8 C++

The provided Visual Studio C++ project can be found in .\examples\cpp\. Using the C++ interface is the most
performant way to interact with the Time Tagger as it supports writing custom measurement classes with no overhead.
But it is more elaborate compared to the other high-level languages. Please visit .\documentation\Time Tagger
C++ API Manual.pdf for more details on the C++ API.

Note:
¢ the C++ headers are stored in the .\driver\include\ folder
* the final assembly must link .\driver\xYZ\TimeTagger.lib

e the library .\driver\xYZ\TimeTagger.dl1 is linked with the shared v142 or newer Visual Studio runtime
(/MD)

1.8. C++ 5

Time Tagger User Manual, Release 1.2.3-local-build

6 Chapter 1. Getting Started

CHAPTER
TWO

INSTALLATION INSTRUCTIONS

2.1 Requirements

2.1.1 Operating System

Windows Windows 7 or higher

We provide separate Windows installers for 32 and 64 bit systems.

2.1.2 Installation

Download and install the most recent Time Tagger software from our downloads site.
Connect the Time Tagger to your computer with the USB cable.

You should now be ready to use your Time Tagger.

2.1.3 Web Application

The Web Application is the provided GUI to show the basic functionality and can be used to do quick measurements.
See Getting Started: Web application for further information.

2.1.4 Programming Examples
The Time Tagger installer provides programming examples for Python, Matlab, Mathematica, LabVIEW, C#, and C++

within the .\examples\<language>\ folders of your Time Tagger installation. See Getting Started: Examples for
further information.

2.1.5 Linux

We do provide install packages and instructions for linux distributions too.

https://www.swabianinstruments.com/time-tagger/downloads/

Time Tagger User Manual, Release 1.2.3-local-build

8 Chapter 2. Installation instructions

CHAPTER
THREE

TUTORIALS

3.1 Confocal Fluorescence Microscope

This tutorial guides you through setting up a data acquisition for a typical confocal microscope controlled with Swabian
Instruments’ Time Tagger. In this tutorial, we will use Time Tagger’s programming interface to define the data acqui-
sition part of a scanning microscope. We will make no specific assumption of how the position scanning system is
implemented except that it has to provide suitable signals detailed in the text.

The basic principle of confocal microscopy is that the light, collected from a sample, is spatially filtered by a confocal
aperture, and only photons from a single spot of a sample can reach the detector. Compared to conventional microscopy,
confocal microscopy offers several advantages, such as increased image contrast and better depth resolution, because
the pinhole eliminates all out-of-focus photons, including stray light.

The following drawing shows a typical confocal fluorescence microscope setup.
single

photon
detector

confocal
aperture

dichroic
mirror

-0 Uuui

oD [l

oL
7_“_“-1 .i».ll.-

piezo
positioner

5 Time Tagger

In this setup, the objective focuses the excitation light from the laser at the fluorescent sample and, at the same time,
collects the resulting emission. The emission photons pass through the confocal aperture and arrive at the single-photon
detector (SPD). For every detected photon, the SPD produces a voltage pulse at its output, namely a photon pulse.

Time Tagger User Manual, Release 1.2.3-local-build

Image from a raster scan

In the confocal microscopy, the detection area is a small diffraction-limited spot. Therefore, to record an image, one
has to scan the sample surface point-by-point and record the detector signal at every location. The majority of scanning
microscopes employ a raster scan path that visits every point on sample step-by-step and line-by-line. The figure below
visualizes the travel path in a typical raster scan.

eg—t+—>0— >0 ——>0—1 >0

In the figure above, the scan starts from the bottom-left corner and proceeds horizontally in steps. At each scan position,
the scanner has to wait for arbitrary integration time to allow sufficient photon collection. This process stops when the
scanner reaches the top-right point.

Along the scan path, the positioner generates a pulse for every new sample position. In the following text, we will call
this signal a pixel pulse.

To measure a confocal fluorescence image, the arrival times of the following three signals must be recorded: photon
pulses, laser pulses, and pixel pulses.

3.1.1 Time Tagger configuration

The Time Tagger library includes several measurement classes designed for confocal microscopy.

We will start by defining channel numbers and store them in variables for convenience.

PIXEL_START_CH = 1 # Rising edge on input 1
PIXEL_END_CH = -1 # Falling edge on input 1
LASER_CH = 2

SPD_CH = 3

Now let’s connect to the Time Tagger.

10 Chapter 3. Tutorials

Time Tagger User Manual, Release 1.2.3-local-build

tt = createTimeTagger()

The Time Tagger hardware allows you to specify a trigger level voltage for each input channel. This trigger level, always
applies for both, raising and falling edges of an input pulse. Whenever the signal level crosses this trigger level, the
Time Tagger detects this as an event and stores the timestamp. It is convenient to set the trigger level to half a signal
amplitude. For example, if your laser sync output provides pulses of 0.2 Volt amplitude, we set the trigger level to 0.1
V on this channel. The default trigger level is 0.5 Volt.

tt.setTriggerLevel (PIXEL_START_CH, 0.5)
tt.setTriggerLevel (LASER_CH, 0.1)

The Time Tagger allows for delay compensation at each channel. Such delays are inevitably present in every measure-
ment setup due to different cable lengths or inherent delays in the detectors and laser sync signals. It is worth noting
that a typical coaxial cable has a signal propagation delay of about 5 ns/m.

Let’s suppose that we have to delay the laser pulse by 6.3 ns, if we want to align it close to the arrival time of the
fluorescence photon pulse. Using the Time Tagger’s API, this will look like:

tt.setInputDelay(LASER_CH, 6300) # Delay is always specified in picoseconds
tt.setInputDelay(SPD_CH, 0) # Default value is: 0

Now we are finished with setting up the Time Tagger hardware and are ready to proceed with defining the measurements.

3.1.2 Intensity scanning microscope

In this section, we start from an easy example of only counting the number of photons per pixel and spend some time on
understanding how to use the pixel trigger signal. The Time Tagger library contains the generic CountBetweenMarkers
measurement that has all the necessary functionality to implement the data acquisition for a scanning microscope.

For the CountBetweenMarkers measurement, you have to specify on which channels the photon and the pixel pulses
arrive. Also, we have to specify the total number of points in the scan, which is the number of pixels in the final image.
Furthermore, we assume that the pixel pulse edges indicate when to start, and when to stop counting photons and the
pulse duration defines the integration time. If your scanning system generates pixel pulses of a different format, take a
look at the section Alternative pixel trigger formats.

As a first step, we create a measurement object with all the necessary parameters provided.

nx_pix = 300
ny_pix = 200
n_pixels = nx_pix * ny_pix

cbm = CountBetweenMarkers(tt, SPD_CH, PIXEL_START_CH, PIXEL_STOP_CH, n_pixels)

The measurement is now prepared and waiting for the signals to arrive. The next step is to send a command to the
piezo-positioner to start scanning and producing the pixel pulses for each location.

scanner. scan(
x0=0, dx=1le-5, nx=nx_pix,
y0=0, dy=1e-5, ny=ny_pix,

Note: The code above introduces a scanner object which is not part of the Time Tagger library. It is an example of a
hypothetical programming interface for a piezo-scanner. Here, we also assume that this call is non-blocking, and the

3.1. Confocal Fluorescence Microscope 11

Time Tagger User Manual, Release 1.2.3-local-build

script can continue immediately after starting the scan.

After we started the scanner, the Time Tagger receives the pixel pulses, counts the events at each pixel, and stores the
count in its internal buffer. One can read the buffer content periodically without disturbing the acquisition, even before
the measurement is completed. Therefore, you can see the intermediate results and visualize the scan progress.

The resulting data from the CountBetweenMarkers measurement is a vector. We have to reorganize the elements of
this vector according to the scan path if we want to display it as an image. For the raster scan, this reorganization can
be done by a simple reshaping of the vector into a 2D array.

The following code gives you an example of how you can visualize the scan process.

while scanner.isScanning():
counts = cbm.getData()
img = np.reshape(counts, nx_pix, ny_pix)
plt.imshow(img)
plt.pause(0.5)

3.1.3 Fluorescence Lifetime Microscope

In the section Intensity scanning microscope, we completely discarded the time of arrival for photon and laser pulses.
The Time Tagger allows you to record a fluorescence decay histogram for every pixel of the confocal image by taking
into account the time difference between the arrival of the photon and laser pulses. This task can be achieved using
the TimeDifferences measurement from the Time Tagger library. In this subsection, we will use the TimeDifferences
measurement.

The TimeDifferences measurement calculates the time differences between laser and photon pulses and accumulates
them in a histogram for every pixel. The measurement class constructor requires imaging and timing parameters, as
shown in the following code snippet.

nx_pix = 300 # Number of pixels along x-axis
ny_pix = 200 # Number of pixels along y-axis
binwidth = 50 # in picoseconds

n_bins = 2000 # number of bins in a histogram
n_pixels = nx_pix * ny_pix # number of histograms

flim = TimeDifferences(
tt,
click_channel=SPD_CH,
start_channel=LASER_CH,
next_channel=PIXEL_START_CH,
binwidth=binwidth,
n_bins=n_bins,
n_histograms=n_pixels

Now we start the scanner and wait until the scan is completed. During the scan, we can read the current data and display
it in real time.

while scanner.isScanning():
counts = flim.getData()
img3D = np.reshape(counts, n_bins, nx_pix, ny_pix) # Fluorescence image cube

(continues on next page)

12 Chapter 3. Tutorials

Time Tagger User Manual, Release 1.2.3-local-build

(continued from previous page)

User defined function that estimates fluorescence lifetime for every pixel
flimg = get_lifetime(img3D)

plt.imshow(£flimg)
plt.pause(0.5)

3.1.4 Alternative pixel trigger formats

What if a piezo-scanner provides a different trigger signal compared to considered in the previous sections? In this
section, we look into a few common types of trigger signals and how to adapt our data acquisition to make them work.

Pixel pulse width defines the integration time

integration
1 (' time 1

pixel N pixel N+1 pixel N+2
time

The case when the pulse width defines the integration time has been considered in the previous subsections.

Pixel pulse indicates the pixel start

integration
i time

pixel N pixel N+1 pixel N+2

time

When a pixel pulse has a duration different from the desired integration time, we must define the integration time
manually. One way would be to record all events until the next pixel pulse and rely on a strictly fixed pixel pulse period.
Alternatively, we can create a well-defined time window after each pixel pulse, so the measurement system becomes
insensitive to the variation of the pixel pulse period.

One can define the time window using the DelayedChannel which provides a delayed copy of the leading edge for
the pixel pulse.

integr_time = int(lel®) # Integration time of 10 ms in picoseconds
delayed_vch = DelayedChannel(tt, PIXEL_START_CH, integr_time)
PIXEL_END_CH = delayed_vch.getChannel ()

cbm = CountBetweenMarkers(tt, SPD_CH, PIXEL_CH, PIXEL_END_CH, n_pixels)

3.1. Confocal Fluorescence Microscope 13

Time Tagger User Manual, Release 1.2.3-local-build

The approach with using DelayedChannel allows for a constant integration time per pixel even if the pixel pulses do
not occur at a fixed period. For instance, in a raster scan, more time is required to move to the beginning of the next
line (fly-back time) compared to the pixel time.

Warning: You have to make sure that pixel pulses do not appear before the end of the integration time for the
previous pixel.

FLIM with non-periodic pixel trigger

integration

I time
«—

1

1

pixel N pixel N+1 pixel N+2

time

In some cases, a scanner generates the pixel pulses with no strictly defined period. However, most scanning measure-
ments require constant integration time for every pixel. Compared to CountBetweenMarkers, the TimeDifferences
measurement do not have a PIXEL_END marker and accumulate the histogram for every pixel until the next pixel pulse
is received. If this behavior is undesired, or if your pixel pulses are not periodic, you will need to gate your detector to
guarantee a constant integration time.

The Time Tagger library provides you with the necessary tools to enforce a fixed integration time when using the
TimeDifferences measurement. Gating the detector events can be done with the GatedChannel. The example code
is provided below.

integr_time = int(lel®) # Integration time of 10 ms in picoseconds
delayed_vch = DelayedChannel(tt, PIXEL_START_CH, integr_time)
PIXEL_END_CH = delayed_vch.getChannel ()

gated_vch = GatedChannel (tt, SPD_CH, PIXEL_START_CH, PIXEL_END_CH)
GATED_SPD_CH = gated_vch.getChannel ()

flim = TimeDifferences(tt,
click_channel=GATED_SPD_CH,
start_channel=LASER_CH,
next_channel=PIXEL_START_CH,
binwidth=binwidth,
n_bins=n_bins,
n_histograms=n_pixels

14 Chapter 3. Tutorials

Time Tagger User Manual, Release 1.2.3-local-build

Line pulse but no pixel pulses

integration
time

pixel N pixel N+1 pixel N+2

time

When a scanning system only has the line-start signal and does not provide the pixel pulses, we have to define time
intervals for each pixel by other means. The pixel markers can be easily generated with EventGenerator virtual
channel which generates events at times relative to the trigger event. Furthermore, the EventGenerator allows you
to generate not only pixel markers that are equally spaced but also pixels that are spaced non-uniformly or have time
varying integration times. For instance, you will find the EventGenerator particularly powerful, if you work with
resonant galvo-scanners and need to correct integration time and pixel spacing according to the speed profile of your
scanner. The example below shows how to apply EventGenerator for generation of pixel markers.

nx_pix = 300 # Number of pixels along x-axis

ny_pix = 200 # Number of pixels/lines along y-axis
integr_time = int(3e9) # Integration time of 3 ms in picoseconds
line_duration = lel2 # Duration of the line scan in picoseconds
binwidth = 50 # in picoseconds

n_bins = 2000 # number of bins in a histogram

n_pixels = nx_pix * ny_pix # number of histograms

LINE_START_CH = 3

Pixels are equally spaced in time (constant speed)

pixel_start_times = numpy.linspace(0, line_duration, nx_pix, dtype='int64')
Pixel integration time is constant

pixel_stop_times = pixel_start_times + integr_time

Create EventGenerator channels
pixel_start_vch = EventGenerator(tt, LINE_START_CH, pixel_start_times.tolist())
pixel_stop_vch = EventGenerator(tt, LINE_START_CH, pixel_stop_times.tolist())

PIXEL_START_CH = pixel_start_vch.getChannel ()
PIXEL_END_CH = pixel_stop_vch.getChannel ()

Use GatedChannel to gate the detector
gated_vch = GatedChannel(tt, SPD_CH, PIXEL_START_CH, PIXEL_END_CH)
GATED_SPD_CH = gated_vch.getChannel ()

flim = TimeDifferences(
tt,
click_channel=GATED_SPD_CH,
start_channel=LASER_CH,
next_channel=PIXEL_START_CH,
binwidth=binwidth,
n_bins=n_bins,

(continues on next page)

3.1. Confocal Fluorescence Microscope 15

Time Tagger User Manual, Release 1.2.3-local-build

(continued from previous page)

n_histograms=n_pixels

Note: Inthe TimeTagger software v2.7.2 we have completely redesigned FI1im measurement. It support easy interface
similar to TimeDifferences, as well as high-performance frame streaming interface that allows for real-time video-
rate FLIM imaging.

3.2 Remote Time Tagger with Python

' network

O00000O000

Swabian instruments

Time Tagger

00000

O00000000

Time Tagger
software

—

AL)

The Time Tagger is a great instrument for data acquisition whenever you detect, count, or analyze single photons. You
can quickly set up a time correlation measurement, coincidence analysis, and much more. However, at some point in
your project, you may want to control your experiment remotely. One option is to use remote desktop software like VNC,
TeamViewer, Windows Remote Desktop, etc. What if you want to control your remote experiment programmatically?
Are you using multiple computers and want to collect data from many of them at the same time? The solution for this
is a remote control interface. Luckily, this task is very common and many software libraries cover the challenge of
dealing with network sockets and messaging protocols.

In the following, we want to demonstrate two ways of connecting to a Time Tagger over a network: Network Time
Tagger and Pyro5.

Network Time Tagger is an ideal solution for sharing a Time Tagger between different computers. By using Network
Time Tagger, a remote computer has direct access to the Time Tag stream and can perform measurements locally, as
if the Time Tagger was directly connected over USB. Pyro on the other hand can be used to access a Time Tagger
remotely. From a remote computer, Pyro can start measurements on the computer connected to the time tagger and
return the results.

3.2.1 Sharing a Time Tagger with Network Time Tagger

From Time Tagger software version 2.10 onward, Time Tagger supports remote operation ‘out-of-the-box’ with Network
Time Tagger. Network Time Tagger implements a server on a computer connected to a Time Tagger and sends the Time
Tag stream directly to the clients. Clients can then connect to the server and run arbitrary measurements independently
on their own computers as if they are directly connected to the hardware device.

The server can be set up with the Time Tagger Web Application or the Time Tagger API through TimeTagger.
startServer(). When setting up the server, the host can decide on the level of access for the clients. With
AccessMode. Control (), the clients have full access to data from all channels and can change the settings of the
Time Tagger. With AccessMode.Listen(), the host can decide to only share data from specific channels.

16 Chapter 3. Tutorials

https://www.swabianinstruments.com/time-tagger/
https://pyro5.readthedocs.io/en/latest/index.html

Time Tagger User Manual, Release 1.2.3-local-build

Clients can connect to the server using the Time Tagger API with createTimeTaggerNetwork (). Once connected,
measurements can be performed directly on the client side. Function calls are identical to the ones used to control a
Time Tagger locally. Therefore, programs written with the Time Tagger API can be easily adapted to run on a remote
computer.

Note: Network Time Tagger can also be used to access a Time Tagger with different programming languages at the
same time, both locally or on a remote computer. With createTimeTaggerNetwork (), it is for example possible to
run simultaneous measurements with Matlab and Python.

Below is a minimal working example for setting up a Network Time Tagger server and client with Python 3.6.

Listing 1: Starting a Network Time Tagger server

import TimeTagger

tagger = TimeTagger.createTimeTagger ()
#connect to the Time Tagger via USB

tagger.startServer(access_mode = TimeTagger.AccessMode.Control,port=41101)

Start the Server. TimeTagger.AccessMode sets the access rights for clients. Port.
—defines the network port to be used

The server keeps running until the command tagger.stopServer() is called or until the.
< program is terminated

Listing 2: Connecting to a Network Time Tagger server

import TimeTagger

tagger = TimeTagger.createTimeTaggerNetwork('ip:port"')
Connect to the Time Tagger server. 'ip' is the IP address of the server and port' is the.
—port defined by the server. The default port is 41101

correlation = TimeTagger.Correlation(tagger=tagger, channel_1=1, channel_2=2, binwidth=1,
— n_bins=1000)

tagger can be used to perform measurements as if the client was connected to the.
—TimeTagger via USB. In this case, the client starts a correlation measurement.

After a measurement is finished, the client can disconnect with TimeTagger.

- freeTimeTagger (tagger)

3.2.2 Remote control of a Time Tagger with Pyro
Pyro5 is a Python library that allows operation of a Time Tagger from a remote computer. It is able to send API
commands to the remote Time Tagger and to obtain their return values. In the following, we describe how to use Pyro5

and achieve seamless access to the Time Tagger’s API remotely.

Listing 3: Teaser code

import matplotlib.pyplot as plt
from Pyro5.api import Proxy

TimeTagger = Proxy("PYRO:TimeTagger@server:23000")

(continues on next page)

3.2. Remote Time Tagger with Python 17

https://pyro5.readthedocs.io/en/latest/index.html

Time Tagger User Manual, Release 1.2.3-local-build

(continued from previous page)

tagger = TimeTagger.createTimeTagger ()

hist = TimeTagger.Correlation(tagger, 1, 2, binwidth=5, n_bins=2000)
hist.startFor(int(10el2), clear=True)

x = hist.getIndex()
while hist.isRunning():
plt.pause(0.1)

y = hist.getData()
plt.plot(x, y)

3.2.3 Remote procedure call

Remote procedure call (RPC) is a technology that allows interaction with remote programs by calling their procedures
and receiving the responses. This involves a real code execution on one computer (server), while the client computer
has only a substitute object (proxy) that mimics the real object running on the server. The proxy object knows how to
send requests and data to the server and the server knows how to interpret these requests and how to execute the real
code.

In the case of Pyro5, the proxy object and server code are provided by the library and we only need to tell Pyro5 what
we want to become available remotely.

3.2.4 Initial setup

You will need to have a Python 3.6 or newer installed on your computer. We recommend using Anaconda distribution.

Install the Time Tagger software if you have not done it yet. The description below assumes that you have the Time
Tagger hardware and are familiar with the 7ime Tagger API.

The last missing part, the Pyro5 package, you can install from PyPi as

pip install Pyro5

3.2.5 Minimal example

Here we start from the simplest functional example and demonstrate working remote communication. The example
consists of two parts: the server and the client code. You will need to run those in two separate command windows.

Server code

We need to create an adapter class with methods that we want to access remotely and decorate it with Pyro5.api.
expose (). The following code is very simple. Later, we will extend it to expose more of the Time Tagger’s function-
ality.

import Pyro5.api
import TimeTagger as TT

@Pyro5.api.expose
class TimeTaggerRPC:

(continues on next page)

18 Chapter 3. Tutorials

https://www.swabianinstruments.com/time-tagger/downloads/
https://pypi.org/project/Pyro5/
https://pyro5.readthedocs.io/en/latest/api/api.html#Pyro5.api.expose
https://pyro5.readthedocs.io/en/latest/api/api.html#Pyro5.api.expose

Time Tagger User Manual, Release 1.2.3-local-build

(continued from previous page)

e i

Adapter for the Time Tagger Library

def scanTimeTagger(self):
"""This method will become available remotely.
return TT.scanTimeTagger()

mirn

if __name__ == '__main__":

Start server and expose the TimeTaggerRPC class

with Pyro5.api.DaemonChost="localhost', port=23000) as daemon:
Register class with Pyro
uri = daemon.register(TimeTaggerRPC, 'TimeTagger')
Print the URI of the published object
print(uri)
Start the server event loop
daemon.requestLoop()

Client code

On the client side, we need to know the unique identifier of the exposed object, which was printed when you started the
server. In PyroS5, every object is identified by a special string (URI) that contains the object identity string and the server
address. As you can see in the code below, we do not use the Time Tagger software directly but rather communicate to
the server that has it.

import Pyro5.api

Connect to the TimeTaggerRPC object on the server
This line is all we need to establish remote communication
TimeTagger = Pyro5.api.Proxy("PYRO:TimeTagger@localhost:23000")

Now, we can call methods that will be executed on the server.
Lets check what Time Taggers are available at the server
timetaggers = TimeTagger.scanTimeTagger()

print(timetaggers)

>> ['1740000ABC', '1750000ABC']

Congratulations! Now you have a very simple but functional communication to your remote Time Tagger software.

3.2.6 Creating the Time Tagger

By now, our code can communicate over a network and can only report the serial numbers of the connected Time
Taggers. In this section, we will expand the server code and make it more useful. The next most important feature of
the server is to expose the createTimeTagger () method to tell the server to initialize the Time Tagger hardware.

You may be tempted to extend the TimeTaggerRPC class as follows:

@Pyro5.api.expose
class TimeTaggerRPC:
"""Adapter for the Time Tagger Library

i

(continues on next page)

3.2. Remote Time Tagger with Python 19

Time Tagger User Manual, Release 1.2.3-local-build

(continued from previous page)

def scanTimeTagger(self):
"""Return the serial numbers of the available Time Taggers.
return TT.scanTimeTagger()

o

def createTimeTagger(self):
"""Create the Time Tagger.
return TT.createTimeTagger() # This will fail! :(

i

To our great disappointment, the createTimeTagger method will fail when you try to access it from the client. The
reason is in how the RPC communication works. The data and the program code have a certain format in which it is
stored in the computer’s memory, and this memory cannot be easily or safely accessed from a remote computer. The
RPC communication overcomes this problem using data serialization, i.e., converting the data into a generalized format
suitable for sending over a network and understandable by a client system.

The Pyro5, more specifically the serpent serializer it employs by default, knows how to serialize the standard Python
data types like a list of strings returned by scanTimeTagger (). However, it has no idea how to interpret the
TimeTagger object returned by the createTimeTagger (). Moreover, instead of sending the TimeTagger object
to the client, we want to send a proxy object which allows the client to talk to the TimeTagger object on the server.

For the TimeTagger, we define an adapter class. Then we modify the TimeTaggerRPC.createTimeTagger to create an
instance of the adapter class, register it with Pyro, and return it. Pyro will automatically take care of creating a proxy
object for the client.

@Pyro5.api.expose
class TimeTagger:
"""Adapter for the Time Tagger object"""
def __init__(self, args, kwargs):
self._obj = TT.createTimeTagger(*args, **kwargs)

def setTestSignal(self, *args):
return self._obj.setTestSignal (*args)

def getSerial(self):
return self._obj.getSerial()

... Other methods of the TT.TimeTagger class are omitted here.

@Pyro5.api.expose

class TimeTaggerRPC:
"""Adapter for the Time Tagger Library"""

def scanTimeTagger(self):
"""Return the serial numbers of the available Time Taggers.
return TT.scanTimeTagger()

o

def createTimeTagger(self, *args, **kwargs):
"""Create the Time Tagger.
tagger = TimeTagger(args, kwargs)
self._pyroDaemon.register(tagger)
return tagger
Pyro will automatically create and send a proxy object

i

(continues on next page)

20 Chapter 3. Tutorials

Time Tagger User Manual, Release 1.2.3-local-build

(continued from previous page)

to the client.

def freeTimeTagger(self, tagger_proxy):
"""Free Time Tagger.
Client only has a proxy object.
objectId = tagger_proxy._pyroUri.object
Get adapter object from the server.
tagger = self._pyroDaemon.objectsById.get(objectId)
self._pyroDaemon.unregister(tagger)
return TT.freeTimeTagger(tagger._obj)

e

3.2.7 Measurements and virtual channels

By now, we can list available Time Tagger devices and create TimeTagger objects. The remaining part is to implement
access to the measurements and virtual channels. We will use the same approach as with the TimeTagger class and
create adapter classes for them.

@Pyro5.api.expose
class Correlation:
"""Adapter class for Correlation measurement.

mirn

def __init__(self, tagger, args, kwargs):
self._obj = TT.Correlation(tagger._obj, *args, **kwargs)

def start(self):
return self._obj.start()

def startFor(self, capture_duration, clear):
return self._obj.startFor(capture_duration, clear=clear)

def stop(self):
return self._obj.stop(Q)

def clear(self):
return self._obj.clear()

def isRunning(self):
return self._obj.isRunning()

def getIndex(self):
return self._obj.getIndex().tolist()

def getData(self):

return self._obj.getData().tolist()

@Pyro5.api.expose
class DelayedChannel():
"""Adapter class for DelayedChannel."""

def __init__(self, tagger, args, kwargs):

(continues on next page)

3.2. Remote Time Tagger with Python 21

Time Tagger User Manual, Release 1.2.3-local-build

(continued from previous page)

def

self._obj = TT.DelayedChannel (tagger._obj, *args, **kwargs)

getChannel (self):
return self._obj.getChannel ()

@Pyro5.api.expose
class TimeTaggerRPC:

mren

Adapter class for the Time Tagger Library

o

Earlier code omitted (...)

def

def

Correlation(self, tagger_proxy, *args, **kwargs):
"""Create Correlation measurement."""

objectId = tagger_proxy._pyroUri.object

tagger = self._pyroDaemon.objectsById.get(objectId)
pyro_obj = Correlation(tagger, args, kwargs)
self._pyroDaemon.register(pyro_obj)

return pyro_obj

DelayedChannel (self, tagger_proxy, *args, **kwargs):
Create DelayedChannel."""

objectId = tagger_proxy._pyroUri.object

tagger = self._pyroDaemon.objectsById.get(objectId)
pyro_obj = DelayedChannel (tagger, args, kwargs)
self._pyroDaemon.register(pyro_obj)

return pyro_obj

o

Note: The methods Correlation.getIndex() and Correlation.getData() return numpy.ndarray arrays.
Pyro5 does not know how to serialize numpy.ndarray, therefore for simplicity of the example, we convert them
to the Python lists.

More efficient approach would be to register custom serializer functions for numpy .ndarray on both, server and client
sides, see Customizing serialization section of the Pyro5 documentation.

3.2.8 Working example

Download the complete source files

e simple_server.py

e simple_example.py

Start the server in a terminal window:

> python simple_server.py

Now open a second terminal window and run the example:

> python simple_example.py

22

Chapter 3. Tutorials

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://pyro5.readthedocs.io/en/latest/clientcode.html#customizing-serialization

Time Tagger User Manual, Release 1.2.3-local-build

Let us take a look at the source code of the example (shown below). You may recognize that it is
practically the same as using the Time Tagger package directly. =~ The only difference is that the im-
port statement import TimeTagger is replaced by the proxy object creation TimeTagger = Pyro5.api.
Proxy ("PYRO:TimeTagger@localhost:23000").

Listing 4: simple_example.py

import numpy as np
import matplotlib.pyplot as plt
import Pyro5.api

TimeTagger = Pyro5.api.Proxy("PYRO:TimeTagger@localhost:23000")

Create Time Tagger

tagger = TimeTagger.createTimeTagger ()
tagger.setTestSignal (1, True)
tagger.setTestSignal (2, True)

print('Time Tagger serial:', tagger.getSerial())

hist = TimeTagger.Correlation(tagger, 1, 2, binwidth=2, n_bins=2000)
hist.startFor(int(10el2), clear=True)

fig, ax = plt.subplots(Q)
The time vector is fixed. No need to read it on every iteration.
x = np.arrayChist.getIndex())
line, = ax.plot(x, x * 0)
ax.set_xlabel('Time (ps)')
ax.set_ylabel('Counts")
ax.set_title('Correlation histogram via Pyro-RPC')
while hist.isRunning():
y = hist.getData()
line.set_ydata(y)
ax.set_ylim(np.min(y), np.max(y))
plt.pause(0.1)

Cleanup

TimeTagger. freeTimeTagger (tagger)
del hist

del tagger

del TimeTagger

See also:

The Time Tagger software installer includes more complete examples of the RPC server that includes more
measurements, virtual channels and implements custom serialization of numpy.ndarray types. You can usu-
ally find the example files in the C:\Program Files\Swabian Instruments\Time Tagger\examples\python\
7-Remote-TimeTagger-with-Pyro5.

3.2. Remote Time Tagger with Python 23

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Time Tagger User Manual, Release 1.2.3-local-build

3.2.9 What is next?

One can follow the ideas presented in this tutorial and implement a fully featured Python package. You can find an
experimental version of such package at PyPi. Instead of manually wrapping every class and function of the Time
Tagger API, the package employs metaprogramming and automatically generates adapter classes.

Let us know if you have any questions about RPC interface for the Time Tagger.

You can expand on the ideas presented in this tutorial, and implement remote control for your complete experiment.

24 Chapter 3. Tutorials

https://pypi.org/project/TimeTaggerRPC/
https://www.swabianinstruments.com/contact/

CHAPTER
FOUR

SYNCHRONIZER

4.1 Overview

The Swabian Instruments’ Synchronizer allows for connecting up to 8 Time Tagger Ultra devices to expand the number
of available channels. The Synchronizer generates a clock and synchronization signal to establish a common time-base
on all connected Time Taggers. The Time Tagger software engine creates a layer of abstraction: the synchronized Time
Taggers appear as one device with a combined number of input channels.

4.2 Requirements

Successful synchronization of your Time Taggers requires:
* You have obtained the Synchronizer hardware.

* Your Time Tagger Ultra has hardware version 1.2 or higher. In case you have an older device and want to
synchronize it with more units, please contact our support or sales team www.swabianinstruments.com/contact .

* Your PC has a sufficient number of USB3 ports for direct connection of every Time Tagger. The Synchronizer
itself does not require a USB connection.

* You have a sufficient number of SMA cables of the same length. You need three cables for each Time Tagger.
For more details, see in the section Cable connections.

* You have installed the Time Tagger software version 2.6.6 or newer.

4.3 Cable connections

The Synchronizer provides a common clock signal for every Time Tagger as well as the synchronization signals. Fur-
thermore, Time Taggers have to be connected to each other in a loop. The connection sequence in the loop defines the
channel numbering order. An additional feedback signal is required to identify which of the Time Taggers in the loop
is the first.

Note: After the release of the Synchronizer, we have changed the connector labels on the front panel of Time Tag-
ger Ultra. In this section, we use the new labeling scheme, while showing the corresponding old labels in brackets:
NEW_LABEL (OLD_LABEL).

25

https://www.swabianinstruments.com/contact/

Time Tagger User Manual, Release 1.2.3-local-build

Table 1: Connections between the Synchronizer and Time Taggers

Synchronizer Time Tagger Description

CLK OUT <N> CLK IN (CLK) 500 MHz clock

SYNC OUT <N> SYNC IN (AUX IN 1) Synchronization data

FDBK IN FDBK OUT (AUX OUT 2) | Feedback from one Time Tagger

Every Time Tagger should have its LOOP OUT (AUX OUT 1) connected to the LOOP IN (AUX IN 2) of next Time

Tagger, eventually forming a signal loop. The following diagram visualizes the connections required for the synchro-
nization of three Time Taggers.

Channels
101 ... 118

I Z-IeEEE

Synchronizer

Channels N Ch I
301 ... 318 47doo7 3;«)600 301 218

Warning: For reliable synchronization, the cables for CLK and SYNC signals shall have a length difference below
4 cm. We recommend using the same cable type for these two signals.

Additionally, we recommend connecting every Time Tagger directly to a USB3 port on the same computer. If your
computer does not have a sufficient number of USB3 ports, avoid using USB hubs as they limit the data bandwidth
available for every Time Tagger. Instead, please install an additional USB controller card into your computer. While
there is a wide variety of USB3 controllers, you have to look for one that can deliver full USB3 bandwidth at every

USB port simultaneously. Typically, such USB controllers have an individual chip for each USB port and require a
PClIe x4 slot on the computer’s motherboard..

26 Chapter 4. Synchronizer

Time Tagger User Manual, Release 1.2.3-local-build

4.3.1 Using an external reference clock

The Synchronizer has a built-in high accuracy and low noise reference oscillator and distributes the clock signals to
all attached Time Taggers. In case you want to use your external reference clock, you have to connect it to the REF IN
connector of the Synchronizer. Additionally, the Synchronizer can supply 10 MHz reference signal through its REF
OUT output. Note that REF OUT is disabled when an external reference signal is present at the REF IN.

Table 2: Requirements to the reference signal at REF IN.

Parameter Value
Coupling AC

Amplitude 0.3... 5.0 Vpp
Frequency 10 MHz
Impedance 50 Ohm

Table 3: Signal parameters at REF OUT.

Parameter Value

Coupling AC

Amplitude 3.3 Vpp (1 Vpp @ 50 Ohm)
Frequency 10 MHz

4.4 Software and channel humbering

The Time Tagger software engine automatically recognizes if a Time Tagger belongs to a synchronized group. It will
also automatically open a connection to all other Time Taggers in the group and present all devices as a single Time
Tagger. There is no specific “master” device, and the connection to the synchronized group can be initiated from any
of the member Time Taggers.

The connection is opened as usual using createTimeTagger (), and optionally you can specify the serial number of
the Time Tagger.

tagger = createTimeTagger()

The tagger object provides a common interface for the whole synchronization loop, and all programming is done in the
same way as for a single Time Tagger. Note that, compared to a single Time Tagger, the channel numbering scheme is
modified for easy identification by a user. The channel number consists of the Time Tagger number in the loop and the
input number on the front panel. The channel number formula is

CHANEL_NUMBER = TT_NUMBER*100 + INPUT_NUMBER

As an example, let us assume we have three Time Tagger Ultra 18 in a synchronization loop. The Time Tagger that
provides the feedback signal to the Synchronizer has sequence number 1, and its channel numbers will be from 101 to
118. The channels of the next Time Tagger will have numbers from 201 to 218, and so forth.

Note: In case the channel numbers on your Time Tagger Ultra start with 0, in the synchronized group, the channel 0
will appear as NO1, where N is the Time Tagger number. See more about channel numbering scheme in the section
Channel Number Schema 0 and 1.

You can request the complete list of available channels with the TimeTagger. getChannelList () method.

4.4. Software and channel humbering 27

Time Tagger User Manual, Release 1.2.3-local-build

from TimeTagger import createTimeTagger, TT_CHANNEL_RISING_EDGES

Connect to any of the synchronized Time Taggers
tagger = createTimeTagger ()

Request a list of all positive edge channels

chan_list = tagger.getChannellList(TT_CHANNEL_RISING_EDGES)
print(chan_list)

>> [101, 102, ... , 317, 318]

4.4.1 Incomplete cable connections

The software engine attempts to detect incorrect or incomplete connections of the cables in the synchronization loop.
In case some connections are missing or were disconnected during operation, the software engine will show a warning
and the data transmission from the disconnected Time Tagger will be filtered out until a valid connection is restored.
Issues with the cable connections and synchronization status are indicated using the status LEDs on the front panel of
the Synchronizer and the Time Tagger. See more in section Status LEDs and troubleshooting.

4.4.2 Buffer overflows

The synchronization loop also propagates the buffer overflow state from any Time Tagger to all members of the loop.
On the software side, the buffer overflow has the same effect as for a single Time Tagger. See, Overflows.

4.5 Limitations

4.5.1 Conditional filter

The conditional filter cannot be applied across synchronized devices. However, it can still be enabled for each Time
Tagger independently.

In case you want to use the conditional filter across devices, you have to send the signal to be filtered (for example, your
laser sync) to every Time Tagger where trigger signals are connected. In software, you have to choose the corresponding
input for time difference measurements.

4.5.2 Internal test signal

The internal test-signal generator is a free-running oscillator independent from the system clock. Therefore, the test
signals are not correlated between different Time Taggers, even if the synchronization loop is set up correctly. If you try
to measure a correlation with the internal test signal across two different Time Taggers, you will see a flat histogram.
On the other hand, performing the same measurement with two input channels of the same Time Tagger will result in
a jitter-limited correlation peak.

28 Chapter 4. Synchronizer

Time Tagger User Manual, Release 1.2.3-local-build

4.6 Status LEDs and troubleshooting

The front panel of the Synchronizer has several LEDs that indicate operation status.

LED Color Description

Power dark No power provided

- solid green Powered on

Status dark Warming up

- solid green Normal operation.

FDBK IN solid green Normal operation

- solid red Invalid feedback signal

REF IN dark No external reference signal

- solid green Valid 10 MHz reference signal
- solid red Invalid reference signal

REF OUT dark Output is disabled when using external reference signal
- solid green Output enabled

The LEDs of the Time Tagger Ultra also indicate the state of the synchronization loop. See more details in section
LEDs.

4.7 Synchronizer with only one Time Tagger

You can use the Synchronizer also with only one Time Tagger for two application scenarios:

4.7.1 Long term clock stability

The Synchronizer has a very good built-in clock which you can benefit from even when you have only one Time Tagger.
Just connect any clock output of the Synchronizer to the clock input of the Time Tagger to benefit from the Synchronizer
clock, which matters especially measuring long time differences.

4.7.2 Absolute clock timestamps

By connecting all signals from the Synchronizer as shown in Cable connections (LOOP IN and LOOP OUT must be
shorted), the timestamps in the Time Tag stream will be referenced to the power-in time of the Synchronizer. Even
when you disconnect from the Time Tagger, e.g., power down, USB timeout, the returned time tags are still referenced
to the start time of the Synchronizer. To verify that this configuration is active, you will see a warning message in the
console on createTimeTagger () that you are using the Synchronizer with only one Time Tagger.

4.6. Status LEDs and troubleshooting 29

Time Tagger User Manual, Release 1.2.3-local-build

30 Chapter 4. Synchronizer

CHAPTER
FIVE

HARDWARE

5.1 Input channels

The Time Tagger has 8 or 18 input channels (SMA-connectors). The electrical characteristics are tabulated below.
Both rising and falling edges are detected on the input channels. In the software, rising edges correspond to channel
numbers 1 to 18 (Time Tagger 20: 1 to 8) and falling edges correspond to respective channel numbers -1 to -18 (Time
Tagger 20: -1 to -8). Thereby, you can treat rising and falling edges in a fully equivalent fashion.

5.1.1 Electrical characteristics

Property Time Tagger 20 | Time Tagger Ultra | Time Tagger X
Termination 50 Ohm 50 Ohm 50 Ohm / High-Z
Input voltage range 0.0t0o 5.0V -50t05.0V -1.5t0 15V
Trigger level range 00to2.5V -25t025V -ltol1V
Minimum signal level | 100 mV 100 mV 100 mV
Minimum pulse width | 1.0 ns 0.5 ns 350 ps

5.1.2 High Resolution Mode

The Time Tagger Ultra Performance can operate in different High Resolution (HighRes) modes. An increased resolu-
tion is achieved by directing the signal from a single input to multiple time-to-digital converters (TDCs). Depending on
the mode, 2, 4, or 8 TDCs are used per input. By averaging the results, a single timestamp with lower jitter is generated.
On the other hand, this process reduces the number of usable signal inputs.

The table shows the usable inputs for the different modes. Channels available with the minimal four-channel license
are shown without parenthesis. Further channels are added from the list in parenthesis in the HighRes column first and
added in the Standard resolution column if the amount of HighRes channels are exhausted.

Mode HighRes channels Standard channels
Standard 1-4,(5-18)
HighResA | 1,3,5,7, (10, 12, 14, 16) | (9, 18)

HighResB | 1,5, 10, 14 9, 18)

HighResC | 5, 14 9,18

Note: As a result of the averaging process, the quality of the calculated timestamps is affected by relative changes
of internal delays of the contributing inputs. These delays are affected especially by the temperature of the device. It
is strongly recommended to let the device heat up for at least 10 s before starting a measurement. Constant average

31

Time Tagger User Manual, Release 1.2.3-local-build

count rates (averaged over the timescale of hundreds of milliseconds) will provide the best results. If you need more
information on this topic, please contact us via support@swabianinstruments.com.

5.2 Data connection

The Time Tagger 20 is powered via a USB connection. Therefore, you should ensure that the USB port is capable of
providing the full specified current (500 mA). A USB >= 2.0 data connection is required for the performance specified
here. Operating the device via a USB hub is strongly discouraged. The Time Tagger 20 can stream about 8 M tags per
second.

The Time Tagger Ultra and Time Tagger X has a USB 3.0 interface. This allows to stream up to 70 M tags per second
to the PC. The actual number highly depends on the performance of the CPU the Time Tagger is connected to and the
evaluation methods involved.

In addition, the Time Tagger X is equipped with an SPF+ Port (10 GbE), which can be used for streaming up to 300 M
tags per second.

5.3 LEDs
The Time Tagger devices have LEDs showing status information.

5.3.1 Time Tagger X

On its front panel, the Time Tagger X has an LED inside the power button and individual channel status LEDs:

Power Button
Color Description
blue Device in standby, press button to turn it on
green Device running
orange | Device is getting ready
red An error occurred
Channel LEDs
Color Description
dark Channel unavailable (according to your license)
blue Channel available but not used by a measurement
solid green Measurement running but no data within last 2 s

blinking green | Time tags are streamed to the PC.
Blinking frequency indicates data rate
blinking orange | Overflow

solid red Error

32 Chapter 5. Hardware

mailto:support@swabianinstruments.com

Time Tagger User Manual, Release 1.2.3-local-build

5.3.2 Time Tagger Ultra and Time Tagger 20

The “Power” LED turns green when the power is supplied to the device.

Status LED

Color Description

solid green Firmware loaded

blinking green- | Time tags are streaming

orange

red Overflows occurred.
LED turns red for 0.1 s on every overflow event.
Solid red indicates continuous overflows.

solid blue Device initialization failed
(check USB connection)

5.3.3 Additional LEDs on Time Tagger X and Time Tagger Ultra

Other RGB LEDs show the additional status information tabulated below. They are located on the front panel of the
Time Tagger Ultra and the rear panel of the Time Tagger X.

LED next to the CLK input (if available)

Color Description

dark No clock signal

solid green Valid reference or synchronization clock
solid red Invalid reference frequency

solid blue Ext. clock valid, but not in use

blinking red * Invalid signal at SYNC IN (AUX IN 1)
blinking yellow * Invalid signal at LOOP IN (AUX IN 2)

LED next to the SYNC IN input

Color Description

dark No synchronizer on CLK input
green Valid signal at SYNC IN

red Invalid signal at SYNC IN

LED next to the LOOP IN input

Color Description

dark No synchronizer on CLK input
green Valid signal at LOOP IN

red Invalid signal at LOOP IN

5.3. LEDs

33

Time Tagger User Manual, Release 1.2.3-local-build

5.4 Test signal

The Time Tagger has a built-in test signal generator that generates a square wave with a frequency in the range 0.8 to
1.0 MHz. You can apply the test signal to any input channel instead of an external input. This is especially useful for
testing, calibrating and setting up the Time Tagger initially. The Time Tagger X also provides the opportunity to put
out two square wave signals with a variable frequency via the AUX Out Ports on the back of the device.

5.5 Virtual channels

The architecture allows you to create virtual channels, e.g., creating a new channel representing the sum of two channels
(logical OR), or coincidence clicks of two channels (logical AND).

5.6 Synthetic input delay

You can introduce an input delay for each channel independently. This is useful if the relative timing between two
channels is important, e.g., to compensate for propagation delay in cables of unequal length. The input delay can be
set individually for rising and for falling edges.

5.7 Synthetic dead time

You can introduce a synthetic dead time for each channel independently. This is useful when you want to suppress
consecutive clicks that are closely separated, e.g., to suppress after-pulsing of avalanche photodiodes or as a simple
way of data rate reduction. The dead time can be set individually for rising and for falling edges in each channel.

5.8 Conditional Filter

The Conditional Filter allows you to decrease the time tag rate without losing those time tags that are relevant to your
application, for instance, where you have a high-frequency signal applied to at least one channel. Examples include
fluorescence lifetime measurements or optical quantum information and cryptography, where you want to capture syn-
chronization clicks from a high repetition rate excitation laser.

To reduce the data rate, you discard all synchronization clicks, except those that follow after one of your low rate
detector clicks, thereby forming a reduced time tag stream. The software processes the reduced time tag stream in the
exact same fashion as the full time tag stream.

This feature is enabled by the Conditional Filter. As all channels on your Time Tagger are fully equivalent, you can
specify which channels are filtered and which channels are used as triggers that enable the transmission of a subsequent
tag on the filtered channels.

Note: In Time Tagger 20, the software-defined input delays, as set by the method setInputDelay (), do not apply to
the Conditional Filter logic.

More details and explanations can be found in the /n Depth Guide: Conditional Filter.

34 Chapter 5. Hardware

Time Tagger User Manual, Release 1.2.3-local-build

5.9 Bin equilibration

The discretization of electrical signals is never perfect. In time-to-digital conversion, this manifests as small differences
(few ps) in the bin sizes inside the converter that even varies from chip to chip. This imperfection is inherent to any
time-to-digital conversion hardware. It is usually not apparent to the user. However, when correlations between two
channels are measured on short time scales, you might see this as a weak periodic ripple on top of your signal. We
reduce the effect of this in the software at the cost of a decrease in the time resolution by v/2. This feature is enabled
by default. If your application requires time resolution down to the jitter limit, you can disable this feature.

5.10 Overflows

The Time Tagger 20 is capable of continuous streaming of about 8 M tags per second on average. For the Time Tagger
Ultra, continuous tags streamed can exceed 70 M tags per second depending on the CPU the Time Tagger is attached
to and the evaluation methods involved. Higher data rates for short times will be buffered internally so that no overflow
occurs. This internal buffer is limited, therefore, if continuous higher data rates arise, data loss occurs and parts of
the time tags are lost. The hardware allows you to check with timeTagger.getOverflows() whether an overflow
condition has occurred. If no overflow is returned, you can be confident that every time tag is received.

Note: When overflows occur, Time Tagger will still produce valid data blocks and discard the invalid tags in between.
Your measurement data may still be valid, although your acquisition time will likely increase.

5.11 External Clock Input - Time Tagger Ultra and Time Tagger X only

Note: An alternative and more flexible way to apply an external clock signal is the use of TimeTaggerBase.
setSoftwareClock(). Since software version 2.10, the software clock is recommended for applying an external
clock.

The external clock input can be used to synchronize different Time Tagger devices. The input clock frequency must be
10 or 500 MHz. The CLK input requires between 100 and 4 Vpp AC coupled into 50 Ohm, 500 mVpp is recommended.
The lock status can be read off the LED color: If the CLK LED shines green, the Time Tagger is locked and uses the
provided clock. If the LED is blue, a valid frequency is supplied, however, the Time Tagger is still configured to use
the internal clocking source. In case of a wrong or unstable frequency, the LED will shine red.

Performance:

The input clock signal must have a very low jitter to provide the specified performance of the Time Tagger. Please note
that the timing specifications for the Time Tagger Ultra with respect to other devices on the same clock are only met
from hardware version 2.3 on.

Caution: In order to reach the specified input jitter for the Time Tagger with an external clock, the in-
put signals must be uncorrelated to the external clock. This restriction does not exist for TimeTaggerBase.
setSoftwareClock().

5.9. Bin equilibration 35

Time Tagger User Manual, Release 1.2.3-local-build

5.12 Synchronization signals - Time Tagger Ultra only

Up to 8 Time Tagger Ultra units can be synchronized in such a way that they behave like a unified Time Tagger. This
requires additional hardware, the Swabian Synchronizer. The Synchronizer uses the additional hardware connections:
SYNC IN, LOOP IN, LOOP OUT and FDBK OUT (see Synchronizer).

Warning: On Time Tagger Ultra units sold before September 2020, the synchronization signals use the ports
labeled AUX IN 1, AUX IN 2, AUX OUT 1, AUX OUT 2. A mapping of the signal names is included in the
Synchronizer documentation (see Synchronizer). If you own one of these units and would like to have a sticker to
update your labels, please reach out to Swabian Instruments support .

5.13 General purpose 10 (GPIO) - Time Tagger Ultra only

Starting from the Time Tagger v2.6.6, the general purpose inputs and outputs on Time Tagger Ultra are used for syn-
chronization signals. New Time Tagger Ultra devices will have updated labeling of these IO ports. See, Synchronizer

5.14 General purpose 10 (GPIO) - Time Tagger 20 only

The Time Tagger 20 is equipped with four general purpose io ports that interface directly with the system’s FPGA.
These are reserved for future implementations.

36 Chapter 5. Hardware

https://www.swabianinstruments.com/contact/

CHAPTER
SIX

SOFTWARE OVERVIEW

The heart of the Time Tagger software is a multi-threaded driver that receives the time tag stream and feeds it to all
running measurements. Measurements are small threads that analyze the time tag stream each in their own way. For
example, a count rate measurement will extract all time tags of a specific channel and calculate the average number of
tags received per second; a cross-correlation measurement will compute the cross-correlation between two channels,
typically by sorting the time tags in histograms, and so on. This is a powerful architecture that allows you to perform
any thinkable digital time domain measurement in real time. You have several choices on how to use this architecture.

6.1 Web application

The easiest way of using the Time Tagger is via a web application that allows you to interact with the hardware from a
web browser on your computer or a tablet. You can create measurements, get live plots, and save and load the acquired
data from within a web browser.

6.2 Precompiled libraries and high-level language bindings

We have implemented a set of typical measurements including count rates, auto correlation, cross correlation, fluores-
cence lifetime imaging (FLIM), etc.. For most users, these measurements will cover all needs. These measurements
are included in the C++ API and provided as precompiled library files. To make using the Time Tagger even easier, we
have equipped these libraries with bindings to higher-level languages (Python, Matlab, LabVIEW, .NET) so that you
can directly use the Time Tagger from these languages. With these APIs you can easily start a complex measurement
from a higher-level language with only two lines of code. To use one of these APIs, you have to write the code in the
high-level language of your choice. Refer to the chapters Gerting Started and Application Programmer’s Interface if
you plan to use the Time Tagger in this way.

6.3 C++ API

The underlying software architecture is provided by a C++ API that implements two classes: one class that represents
the Time Tagger and one class that represents a base measurement. On top of that, the C++ API also provides all
predefined measurements that are made available by the web application and high-level language bindings. To use this
API, you have to write and compile a C++ program.

37

Time Tagger User Manual, Release 1.2.3-local-build

38 Chapter 6. Software Overview

CHAPTER
SEVEN

APPLICATION PROGRAMMER'’S INTERFACE

The Time Tagger API provides methods to control the hardware and to create measurements that are hooked onto the
time tag stream. It is written in C++ and we also provide wrapper classes for several common higher-level languages
(Python, Matlab, LabVIEW, .NET). Maintaining this transparent equivalence between different languages simplifies
documentation and allows you to choose the most suitable language for your experiment. The API includes a set of
standard measurements that cover common tasks relevant to photon counting and time-resolved event measurements.
These classes will most likely cover your needs and, of course, the API provides you a possibility to implement your
own custom measurements. Custom measurements can be created in one of the following ways:

* Subclassing the IteratorBase or CustomMeasurement class (best performance, but only available in the C++,
C# and Python API - see example in the installation folder)

* Using the TimeTagStream measurement and processing the raw time tag stream.

* Offline processing when you store time-tags into a file using Fileliriter and then read the resulting file to
perform desired analysis of the time-tags. This also enables to keep a record of the complete chronology of the
events in your experiment.

7.1 Examples

Often the fastest way to get an impression on the API is through examples.

7.1.1 Measuring cross-correlation

The code below shows a simple but operational example of how to perform a cross-correlation measurement with the
Time Tagger API. In fact, such simple code is already sufficient to perform real-world experiments in a lab.

Create an instance of the TimeTagger
tagger = createTimeTagger()

Adjust trigger level on channel 2 to 0.25 Volt
tagger.setTriggerLevel (2, 0.25)

Add time delay of 123 picoseconds on the channel 3
tagger.setInputDelay(3, 123)

Create Correlation measurement for events in channels 2 and 3
corr = Correlation(tagger, 2, 3, binwidth=10, n_bins=1000)

Run Correlation for 1 second to accumulate the data

(continues on next page)

39

Time Tagger User Manual, Release 1.2.3-local-build

(continued from previous page)

corr.startFor(int(lel2), clear=True)
corr.waitUntilFinished()

Read the correlation data
data = corr.getData()

7.1.2 Using virtual channels

Time Tagger API implements on-the-fly time-tag processing through virtual channels. The following example shows
how time-tags from two different real channels can be combined into one virtual channel.

tagger = createTimeTagger()

Enable internal generator to channels 1 and 2. Frequency ~800 kHz.
tagger.setTestSignal([1,2], True)

Create virtual channel that combines time-tags from real inputs 1 and 2
vc = Combiner(tagger, [1, 2])

Create countrate measurement at channels 1, 2 and the "combiner" channel
rate = Countrate(tagger, [1, 2, vc.getChannel()])

Run Countrate for 1 second and print the result for all three channels
rate.startFor(int(lel2), clear=True)

rate.waitUntilFinished()

print(rate.getData())

>> [800008.81 800008.81 1600017.62]

From the results, we see that the combined event rate is a sum of the event rates at both input channels, as expected.

7.1.3 Using multiple Time Taggers

You can use multiple Time Taggers on one computer simultaneously. In this case, you usually want to associate your
instance of the TimeTagger class to the Time Tagger device. This is done by specifying the serial number of the
device, an optional parameter, to the factory function createTimeTagger ().

tagger_1 = createTimeTagger("123456789ABC")
tagger_2 = createTimeTagger("123456789XYZ")

The serial number of a physical Time Tagger is a string of digits and letters (every Time Tagger has a unique hardware se-
rial number). It is printed on the label at the bottom of the Time Tagger hardware. In addition, the scanTimeTagger ()
method shows the serial numbers of the connected but not instantiated Time Taggers. It is also possible to read the
serial number for a connected device using TimeTagger.getSerial () method.

You can find more examples supplied with the TimeTagger software. Please see the examples\<language> subfolder
of your Time Tagger installation. Usually, the installation folder is C:\Program Files\Swabian Instruments\
Time Tagger.

40 Chapter 7. Application Programmer’s Interface

Time Tagger User Manual, Release 1.2.3-local-build

7.1.4 Using Time Tagger remotely

Using Network Time Tagger you can stream the time-tags to a remote computer(s) and process them independently.
You can easily work with your Time Tagger device over the network as if your remote computer is connected directly
to the hardware. This example shows how you can start the server, connect a client to it and perform a simple countrate
measurement.

You can start the server by calling TimeTagger.startServer () on a existing TimeTagger object.

Connected to the hardware as usual
tagger = createTimeTagger()

Start the server with full remote control enabled
tagger.startServer (AccessMode.Control)

Keep this process running
input ('Press ENTER to exit the server process...')

Stop the server if user pressed ENTER key
tagger.stopServer()

Disconnect from the hardware
freeTimeTagger (tagger)

For simplicity of the example we assume that the server is running as a separate process on the same computer. There-
fore, we run the client code on the same computer and use localhost as a server address. You can also adjust the
server address and try the client code on another PC.

Server address, we assume it runs on the same computer
address = 'localhost'

Connect to the server
ttn = createTimeTaggerNetwork(address)

Enable test signal on the remote hardware
ttn.setTestSignal(l, True)
ttn.setTestSignal (2, True)

Create “Countrate’ measurement and run it for a fixed duration
cr = Countrate(ttn, [1,2,3])

cr.startFor(lel2)

cr.waitUntilFinished()

Print the resulting data
print(cr.getData())

Close the connection to the server
freeTimeTagger (ttn)

7.1. Examples 41

Time Tagger User Manual, Release 1.2.3-local-build

7.2 The TimeTagger Library

The Time Tagger Library contains classes for hardware access and data processing. This section covers the units and
terminology definitions as well as describes constants and functions defined at the library level.

7.2.1 Units of measurement

Time is measured and specified in picoseconds. Time-tags indicate time since device start-up, which is represented by
a 64-bit integer number. Note that this implies that the time variable will roll over once approximately every 107 days.
This will most likely not be relevant to you unless you plan to run your software continuously over several months, and
you are taking data at the instance when the rollover is happening.

Analog voltage levels are specified in Volts.

7.2.2 Channel numbers

You can use the Time Tagger to detect both rising and falling edges. Throughout the software API, the rising edges
are represented by positive channel numbers starting from 1 and the falling edges are represented by negative channel
numbers. Virtual channels will automatically obtain numbers higher than the positive channel numbers.

The Time Taggers delivered before mid 2018 have a different channel numbering. More details can be found in the
Channel Number Schema 0 and 1 section.

7.2.3 Unused channels

There might be the need to leave a parameter undefined when calling a class constructor. Depending on the program-
ming language you are using, you pass an undefined channel via the static constant CHANNEL_UNUSED, which can be
found in the TT class for .NET and in the TimeTagger class in Matlab.

7.2.4 Constants

CHANNEL_UNUSED

Can be used instead of a channel number when no specific channel is assumed. In MATLAB, use TimeTagger.
CHANNEL_UNUSED.

7.2.5 Enumerations

class AccessMode
Controls how the Time Tagger server delivers the data-blocks to the connected clients, and if the clients are
allowed to change the hardware settings.
Control
Clients have control over all settings on the Time Tagger. The data-blocks are delivered asynchronously to
every client.
Listen

Clients cannot change settings on the Time Tagger and only subscribe to the exposed channels. The data-
blocks are delivered asynchronously to every client.

42 Chapter 7. Application Programmer’s Interface

Time Tagger User Manual, Release 1.2.3-local-build

SynchronousControl

The same as AccessMode. Control but the data is delivered synchronously to every client.

Warning: This mode is not recommended for general use. The server will attempt to deliver a data-
block to every connected client before sending the next data-block. Therefore, the data transmission
will always be limited by the slowest client. If any of the clients cannot handle the data rate fast enough
compared to the data-rate produced by the Time Tagger hardware, all connected clients will be affected
and the Time Tagger hardware buffer may overflow. This can happen due to the network speed limit or
insufficient CPU speed on any of the connected clients.

class ChannelEdge

Selects the channels that TimeTagger.getChannellList () returns.
All

Rising and falling edges of channels with HighRes and Standard resolution.
Rising

Rising edges of channels with HighRes and Standard resolution.
Falling

Falling edges of channels with HighRes and Standard resolution.
HighResAll

Rising and falling of channels edges with HighRes resolution.
HighResRising

Rising edges of channels with HighRes resolution.
HighResFalling

Falling edges of channels with HighRes resolution.
StandardAll

Rising and falling edges of channels with Standard resolution.
StandardRising

Rising edges of channels with Standard resolution.
StandardFalling

Falling edges of channels with Standard resolution.

class CoincidenceTimestamp

Defines what timestamp to use for a coincidence event in Coincidence/Coincidences.
Last

Use the last time-tag to define the timestamp of the coincidence.
Average

Calculate the average timestamp of all time-tags in the coincidence and use it as the timestamp of the
coincidence.

First
Use the first time-tag to define the timestamp of the coincidence.
ListedFirst

Use the timestamp of the channel at the first position of the list when Coincidence or a group of
Coincidences is instantiated.

7.2. The TimeTagger Library 43

Time Tagger User Manual, Release 1.2.3-local-build

class GatedChannellInitial

The initial state of a GatedChannel.

Closed = 0
The gate is closed initially.

Open =1
The gate is open initially.

class Resolution

Defines the resolution mode of the Time Tagger on connection using createTimeTagger (). Details on the
available inputs are listed in the hardware overview.
Standard

Use one time-to-digital conversion per channel. All physical inputs can be used.

HighResA

Use two time-to-digital conversions per channel. The resolution is increased by a factor of ~ 1/2 compared
to the Standard mode, but only a reduced number of certain inputs can be used. Some inputs may remain
in Standard mode depending on your license.

HighResB

Use four time-to-digital conversions per channel. The resolution is increased by a factor of ~ 2 compared
to the Standard mode, but only a reduced number of certain inputs can be used. Some inputs may remain
in Standard mode depending on your license.

HighResC

Use four time-to-digital conversions per channel. The resolution is increased by a factor of ~ /8 compared
to the Standard mode, but only a reduced number of certain inputs can be used. Some inputs may remain
in Standard mode depending on your license.

class TagType

This enumeration describes the overflow condition.

TimeTag = 0
A normal event from any input channel, no overflow.

Error = 1
An error in the internal data processing, e.g. on plugging the external clock. This invalidates the global
time.

OverflowBegin = 2

Marks the beginning of an interval with incomplete data because of too high data rates.

OverflowEnd = 3
Marks the end of the interval. All events, which were lost in this interval, have been handled

MissedEvents = 4

This virtual event signals the number of lost events per channel within an overflow interval. Might be sent
repeatedly for larger number of lost events.

class UsageStatisticsStatus

Disabled = 0

Usage statistics collection and upload is disabled.

44

Chapter 7. Application Programmer’s Interface

Time Tagger User Manual, Release 1.2.3-local-build

Collecting = 1

Enable usage statistics collection local but without automatic uploading. This option might be useful to
collect usage statistics for debugging purpose.

CollectingAndUploading = 2

Enable usage statistics collection and automatic upload

7.2.6 Functions

createTimeTagger ([serial=”, resolution=Resolution.Standard])
Establishes the connection to a first available Time Tagger device and creates a TimeTagger object. Optionally,
the connection to a specific device can be achieved by specifying the device serial number.

If the HighRes mode is available, it can be selected from Resolution. Details on the available inputs are listed
in the hardware overview.

In MATLAB the TimeTagger object is created by instantiating the class directly as tagger =
TimeTagger([serial, resolution]).

Parameters
» serial (str) — Serial number string of the device or empty string

» resolution (Resolution) — Select the resolution of the Time Tagger. The default is
Resolution.Standard.

Returns
TimeTagger object

Return type
Timelagger

Raises
RuntimeError — if no Time Tagger devices are available or if the serial number is not correct.

createTimeTaggerVirtual ()

Creates a virtual Time Tagger object. Virtual Time Tagger uses time-tag dump file(s) as a data source instead of
Time tagger hardware. This allows you to use all Time Tagger library measurements for offline processing of the
dumped time tag stream. For example, you can repeat the analysis of your experiment with different parameters,
like different binwidths etc.

In MATLAB the TimeTaggerVirtual object is created by instantiating the class directly as tagger =
TimeTaggerVirtual().

Returns
TimeTaggerVirtual object

Return type
TimeTaggerVirtual

createTimeTaggerNetwork ([address= "localhost:41101'])

Creates anew TimeTaggerNetwork object. During creation, the object tries to open a connection to the specified
Time Tagger server that has been created by TimeTagger.startServer (). This makes the remote time-tag
stream locally available. If the connection fails, the method will throw an exception.

In MATLAB the TimeTaggerNetwork object is created by instantiating the class directly as tagger =
TimeTaggerNetwork(address).

7.2. The TimeTagger Library 45

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#RuntimeError

Time Tagger User Manual, Release 1.2.3-local-build

Parameters
address (str) — IP address, hostname, or domain-name of the server, where the Time Tagger
server is running. The port number is optional and can be specified if server listens on a port
other than default 41101.

Returns
TimeTaggerNetwork object that can be used, e.g., for measurements

Return type
TimeTaggerNetwork

Raises
e RuntimeError - if the connection to the server cannot be made.
* ValueError - if the address string has an invalid format.

getTimeTaggerServerInfo([address= 'localhost:41101'])

Returns TimeTagger configuration, exposed channels, hardware channels and virtual channels as a JSON for-
matted string.

Parameters
address (str) — IP address, hostname or domain-name of the server, where the Time Tagger
server is running. The port number is optional and can be specified if server listens on a port
other than default 41101.

Returns
Information about server, available channels and exposed channels.

Return type
str or dict

Raises
e RuntimeError - if the connection to the server cannot be made.
e ValueError - if the address string has an invalid format.

freeTimeTagger (tagger)
Releases all Time Tagger resources and terminates the active connection.

Parameters
tagger (TimeTaggerBase) — TimeTaggerBase object to disconnect

scanTimeTagger ()

Returns a list of the serial numbers of the connected but not instantiated Time Taggers.
In MATLAB this function is accessible as TimeTagger.scanTimeTagger ().

Returns
List of serial numbers

Return type
list[str]

scanTimeTaggerServers ()

Scans the network for available Time Tagger servers.

Note: The server discovery algorithm uses multicast UDP messages sent to the address 239.255.255.83:41102.
This method is expected to work well in most situations, however there is a possibility when it could fail. The

46 Chapter 7. Application Programmer’s Interface

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

Time Tagger User Manual, Release 1.2.3-local-build

servers may not be discoverable if the system firewall rejects multicast traffic or blocks access to the used UDP
port 41102, also multicast traffic is not usually forwarded to other IP networks by the routers.

Returns
A list of addresses of the Time Tagger servers that are available in the network.

Return type
list[str]

setLogger (callback)

Registers a callback function, e.g. for customized error handling. Please see the examples in the installation folder
on how to use it. Callback function shall have the following signature callback(level, message). By default, the
log messages are printed into the console.

Python example:

def logger_func(level, message):
print(level, message)
setLogger (logger_func)

Matlab example:

function logger_func(level, message)
fprintf('%d : %s\n', level, message)

end

TimeTagger.setLogger(@logger_func)

setTimeTaggerChannelNumberScheme (int scheme)
Selects whether the first physical channel starts with 0 or 1

TT_CHANNEL_NUMBER_SCHEME_AUTO - the scheme is detected automatically, according to the channel labels on
the device (default).

TT_CHANNEL_NUMBER_SCHEME_ONE - force the first channel to be 1.
TT_CHANNEL_NUMBER_SCHEME_ZERO - force the first channel to be 0.

Important: The method must be called before the first call to createTimeTagger ().

getTimeTaggerChannelNumberScheme ()

Returns the currently used channel schema, which is either TT_CHANNEL_NUMBER_SCHEME_ZERO or
TT_CHANNEL_NUMBER_SCHEME_ONE.

Returns
Channel schema

Return type
int

mergeStreamFiles (output_filename, input_filenames, channel_offsets, time_offsets, overlap_only)

Parameters
» output_filename (str) — Filename where to store the merge result *. ttbin.

» input_filenames (List[str])— List of dump files that will be merged

7.2. The TimeTagger Library 47

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Time Tagger User Manual, Release 1.2.3-local-build

e channel_offsets (List[int]) — Channel number offset for each *.ttbin file. Useful
when input files have the same channel numbers.

» time_offsets (List[int])— Time offset for each *.ttbin file in picoseconds.
» overlap_only (bool) - If True, then merge only the regions where the time is overlapping.

This function merges a list of time tag stream files into one file. The merged stream file can be loaded into
the TimeTaggerVirtual for processing. The file merging combines streams into one with the possibility of
specifying a constant time offset for each input stream file. Additionally, it is possible to specify channel number
offset if the input stream files were recorded from the same channel numbers, for instance, using two Time Tagger
devices. The parameters input_filenames, channel_offsets, and time_offsets shall be of equal length.

This function handles the *. ttbin files the same way as the TimeTaggerVirtual.replay().

See also: FileWriter, FileReader, and The TimeTaggerVirtual class.

Note: When merging multiple stream files recorded at different times or from different devices, you have to
be aware of possible time base differences. This function does not rescale the data into a common time base
as this would require additional information and external synchronization signal. If you want to improve the
synchronicity of the time base between two devices, please send the reference clock signal to any of the available
inputs of each Time Tagger and set up the software clock setSoftwareClock().

Usage statistics data collection

See also the section Usage Statistics Collection.

setUsageStatisticsStatus(sratus)

Parameters
status (UsageStatisticsStatus) — New status of the usage statistics data collection.

This function allows a user to override the system-wide default setting on collection and submission of the usage
statistics data. This function operates within the scope of a current OS user. The system-wide default setting is
given during the installation of the Time Tagger software. Please run the installer again to allow collection and
uploading or to disable the usage statistics.

getUsageStatisticsStatus()

Returns
Returns the current status of the usage statistics for the current user. The status is described by
the UsageStatisticsStatus.

Return type
UsageStatisticsStatus

getUsageStatisticsReport()

This function returns the current state of the usage statistics report as a JSON formatted string. If there is no
report data available or it was submitted just now, the output is a message: Info: No report data available yet. If
you had given your consent earlier and then revoked it, this function will still return earlier accumulated report
data.

Returns
Usage statistics data encoded as JSON string.

Return type
str

48 Chapter 7. Application Programmer’s Interface

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Time Tagger User Manual, Release 1.2.3-local-build

7.3 TimeTagger classes

The Time Tagger classes represent the different time-tag sources for your measurements and analysis. These objects
are created by factory functions in the Time Tagger library:

Time Tagger hardware
The TimeTagger represents a hardware device and allows access to hardware settings. To connect
to a hardware Time Tagger and to get a TimeTagger object, use createTimeTagger ().

Virtual Time Tagger
The TimeTaggerVirtual allows replaying files created with the Fileliriter. To create a
TimeTaggerVirtual object, use createTimeTaggerVirtual ().

Network Time Tagger
The TimeTaggerNetwork allows the (remote) access to a Time Tagger made available
via TimeTagger.startServer(). The TimeTaggerNetwork object is created with

createTimeTaggerNetwork () which also establishes connection to the server.

7.3.1 General Time Tagger features

The TimeTaggerBase class defines methods and functionality present in all Time Tagger objects. The specific classes
below inherit from TimeTaggerBase. Every measurement and virtual channel instance requires a reference to a
TimeTaggerBase object to associate with.

class TimeTaggerBase

setInputDelay (channel, delay)

Convenience method that calls setDelaySoftware () if you use a Time Tagger 20 or the delay is > 2 ps,
otherwise setDelayHardware () is called.

Parameters
¢ channel (int)— Channel number
e delay (int) — Delay time in picoseconds

getInputDelay (channel)

Convenience method that returns the sum of getDelaySoftware () and getDelayHardware ().

Parameters
channel (int)— Channel number

Returns
Delay time in picoseconds

Return type
int

setDelayHardware (channel, delay)

Note: Method is not available for the Time Tagger 20.

Set an artificial delay per channel. The delay can be positive or negative. This delay is applied onboard the
Time Tagger directly after the time-to-digital conversion, so it also affects the Conditional Filter. If you
exceed the maximum hardware delay range, please use setDelaySoftware () instead.

Parameters

7.3. TimeTagger classes 49

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Time Tagger User Manual, Release 1.2.3-local-build

¢ channel (int)— Channel number

¢ delay (int) — Delay time in picoseconds, the maximum/minimum value allowed is
42000000 (£2 ps)

getDelayHardware (channel)

Note: Method is not available for the Time Tagger 20.

Returns the value of the delay applied onboard the Time Tagger in picoseconds for the specified channel.

Parameters
channel (int) — Channel number

Returns
Delay time in picoseconds

Return type
int
setDelaySoftware (channel, delay)
Set an artificial delay per channel. The delay can be positive or negative. This delay is applied on the
computer, so it does not affect onboard processes such as the Conditional Filter.
Parameters
¢ channel (int)— Channel number

e delay (int) — Delay time in picoseconds

getDelaySoftware (channel)

Returns the value of the delay applied on the computer in picoseconds for the specified channel.

Parameters
channel (int) - Channel number

Returns
Delay time in picoseconds

Return type
int

setDeadtime (channel, deadtime)

Sets the dead time of a channel in picoseconds. The requested time will be rounded to the nearest multiple
of the internal clock period, which is 6 ns for the Time Tagger 20, 2 ns for the Time Tagger Ultra and 1.333
ns for the Time Tagger X. The minimum dead time is one clock cycle. As the deadtime passed as an input
will be altered to the rounded value, the rounded value will be returned. The maximum dead time is 393
us for the Time Tagger 20, 131 ps for the Time Tagger Ultra and 87 ps for the Time Tagger X.

Note: The specified deadtime is 2.1 ns for Time Tagger Ultra and 1.5 ns for Time Tagger X. With the
default setting of the hardware deadtime filter, an event arriving between the default hardware deadtime
and the specified deadtime after the last event of that channel might be dropped (e.g., an event arriving
between 2 ns and 2.1 ns after the last event on that channel for Time Tagger Ultra).

Parameters

¢ channel (int) - Channel number

50 Chapter 7. Application Programmer’s Interface

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Time Tagger User Manual, Release 1.2.3-local-build

* deadtime (int) — Deadtime value in picoseconds

Returns
Deadtime in picoseconds rounded to the nearest valid value (multiple of the clock period not
exceeding maximum dead time).

Return type
int
getDeadtime (channel)
Returns the dead time value for the specified channel.

Parameters
channel (int) — Physical channel number

Returns
Deadtime value in picoseconds

Return type
int
getOverflows()
Returns the number of overflows (missing blocks of time tags due to limited USB data rate) that occurred
since start-up or last call to clearOverflows().

Returns
Number of overflows

Return type
int

getOverflowsAndClear()
Returns the number of overflows that occurred since start-up and sets them to zero (see,

clearOverflows()).

Returns
Number of overflows

Return type
int
clearOverflows()

Set the overflow counter to zero.

setSoftwareClock (input_channel: int, input_frequency: float, averaging_periods: float = 1000,
wait_until_locked: bool = True)

Define in software one of the input channels as the base clock for all channels. This feature sets up a software
PLL and rescales all incoming time-tags according to the software clock defined. The PLL provides a new
time base with “ideal clock tags” separated by exactly the defined clock_period. For measurements, you
can use both, rescaled and ideal clock tags.

While the PLL is not locked, the time base of the instrument is invalid. In this case, the time-tag stream
changes to the overflow mode. This means that after every call to setSoftwareClock(), you will find
overflows because the PLL starts from an unlocked state.

Caution: It is often useful to apply this feature in combination with TimeTagger.
setEventDivider() on the input_channel. The values of input_frequency and averaging_periods

7.3.

TimeTagger classes 51

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

Time Tagger User Manual, Release 1.2.3-local-build

correspond to the transferred time-tags, not to the physical frequency. Changing the divider indepen-
dently after setting up the software clock may lead to a failure of the locking process. Do not add
input_channel to the list of filtered channels in TimeTagger.setConditionalFilter().

For the Time Tagger 20, a phase error of 200 ps needs to be considered when using the software clock.

Parameters
¢ input_channel (int) — The physical channel that is used as software clock input.

» input_frequency (float) — The frequency of the software clock after application of
TimeTagger.setEventDivider() (e.g. a 10 MHz clock signal with divider = 20 has
input_frequency = 500 000). The value should not deviate from the real frequency by
more than a few percent. Default: 10E6, for 10 MHz.

¢ averaging_periods (float) — The number of cycles to average over. The suppression
of discretization noise is improved by a higher averaging_periods. If the value is too large,
however, this will result in increased phase jitter due to the drift of the internal clock or the
applied software clock signal. Default: 1000.

e wait_until_locked (bool) — Blocks the execution until the software clock is locked.
Throws an exception on locking errors. All locking log messages are filtered while this call
is executed. Default: True

disableSoftwareClock()

Disable the software clock.

getSoftwareClockState()

Provides an object representing the current software clock state. This includes the configuration parameters
as well as dynamic values generated based on the incoming signal.

Returns
An object that contains the current state of the software clock.

Return type
SoftwareClockState

getFence (alloc_fence: bool = True)

Generate a new fence object, which validates the current configuration and the current time. This fence is
uploaded to the earliest pipeline stage of the Time Tagger. Waiting on this fence ensures that all hardware
settings, such as trigger levels, channel registrations, etc., have propagated to the FPGA and are physically
active. Synchronizes the Time Tagger internal memory so that all tags arriving after the waitForFence ()
call were actually produced after the getFence() call. The waitForFence() function waits until all
tags, which are present at the time of the function call within the internal memory of the Time Tagger, are
processed. This call might block to limit the number of active fences.

Parameters
alloc_fence (bool) — optional, default: True. If False, a reference to the most recently
created fence will be returned instead

Returns
The allocated fence

Return type
int

waitForFence (fence, timeout: int = -1)

Wait for a fence in the data stream. See getFence () for more details.

52 Chapter 7. Application Programmer’s Interface

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Time Tagger User Manual, Release 1.2.3-local-build

Parameters
» fence (int) - fence object, which shall be waited on

e timeout (int) — (optional) Timeout in milliseconds. Negative means no timeout, zero
returns immediately. Default: -1.

Returns
True if the fence has passed, false on timeout

Return type
bool

sync (timeout: int = -1)
Ensure that all hardware settings, such as trigger levels, channel registrations, etc., have propagated to the
FPGA and are physically active. Synchronizes the Time Tagger internal memory, so that all tags arriving
after a sync call were actually produced after the sync call. The sync function waits until all tags, which
are present at the time of the function call within the internal memory of the Time Tagger, are processed.
It is equivalent to waitForFence(getFence()).

The operation of this method on the TimeTaggerNetwork depends on the server access mode. If the
TimeTaggerNetwork is connected to the Time Tagger server started in AccessMode. Control, the syn-
chronization will be done all way through the server and the hardware. If the Time Tagger server started in
AccessMode. Listen, the client will be able to synchronize only with the server but will not synchronize
with the Time Tagger Hardware. However, if a USB synchronization fence was created by the server side,
the clients will also see it.

See also:

e getFence(), waitForFence(), startServer(), AccessMode

» Synchronization of the Time Tagger pipeline

Parameters
timeout (int) — (optional) Timeout in milliseconds. Negative means no timeout, zero re-
turns immediately. Default: -1.

Returns
True if the synchronization was successful, false on timeout

Return type
bool

getInvertedChannel (channel)
Returns the channel number for the inverted edge of the channel passed in via the channel parameter. In
case the given channel has no inverted channel, CHANNEL_UNUSED is returned.

Parameters
channel (int)— Channel number

Returns
Channel number

Return type
int

isUnusedChannel (channel)
Returns true if the passed channel number is CHANNEL_UNUSED.

Parameters
channel (int) - Channel number

7.3.

TimeTagger classes 53

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Time Tagger User Manual, Release 1.2.3-local-build

Returns
True/False

Return type
bool

getConfiguration()

Returns a JSON formatted string (dictionary in Python) containing complete information on the Time Tag-
ger settings. It also includes descriptions of measurements and virtual channels created on this Time Tagger
instance.

Returns
Time Tagger settings and currently existing measurements.

Return type
stror dict

7.3.2 Time Tagger hardware

class TimeTagger
Base class: TimeTaggerBase

This class provides access to the hardware and exposes methods to control hardware settings, such as trigger
levels or even filters. Behind the scenes, it opens the USB connection, initializes the device and receives and
manages the time-tag-stream.

reset()
Reset the Time Tagger to the start-up state.

setTriggerLevel (channel, voltage)
Set the trigger level of an input channel in Volts.

Parameters
e channel (int) — Physical channel number
» voltage (float) — Trigger level in Volts
getTriggerLevel (channel)
Returns trigger level for the specified physical channel number.

Parameters
channel (int) — Physical channel number

Returns
The applied trigger voltage level, which might differ from the input parameter due to the DAC
discretization.

Return type
float
getHardwareDelayCompensation (channel)
Get the hardware input delay compensation for the given channel in picoseconds.
This compensation can be understood as an implicit part of setDelayHardware() and

setDelaySoftware(). If your device is able to set an arbitrary delay onboard, this applies to the
hardware delay compensation as well.

Parameters
channel (int) — Channel number

54 Chapter 7. Application Programmer’s Interface

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

Time Tagger User Manual, Release 1.2.3-local-build

Returns
Hardware delay compensation in picoseconds

Return type
int
setConditionalFilter (trigger, filtered, hardwareDelayCompensation=True)

Activates or deactivates the event filter. Time tags on the filtered channels are discarded unless they were
preceded by a time tag on one of the trigger channels, which reduces the data rate. More details can be
found in the /n-Depth Guide: Conditional Filter.

Parameters
e trigger (1ist[int])— List of channel numbers
e filtered (1ist[int]) - List of channel numbers

¢ hardwareDelayCompensation (bool)—optional, default: True. If set to False, the phys-
ical hardware delay will not be compensated. This is only relevant for devices without
setDelayHardware (), do not set this value to False if your device is capable of onboard
delay compensation. Without onboard delay compensation, setting the value to False guar-
antees that the trigger tag of the conditional filter is always in before the triggered tag when
the InputDelays are set to 0.
clearConditionalFilter()
Deactivates the event filter. Equivalent to setConditionalFilter([], [], True). Enables the phys-
ical hardware delay compensation again if it was deactivated by setConditionalFilter().
getConditionalFilterTrigger ()
Returns the collection of trigger channels for the conditional filter.

Returns
List of channel numbers

Return type
list[int]

getConditionalFilterFiltered()
Returns the collection of channels to which the conditional filter is currently applied.

Returns
List of channel numbers

Return type
list[int]

setEventDivider (channel, divider)

=0 Event divider (n = 4) time

click skip skip skip click skip skip skip click

RSSO BN S

Applies an event divider filter with the specified factor to a channel, which reduces the data rate. Only
every n-th event from the input stream passes through the filter, as shown in the image. The divider is a 16
bit integer, so the maximum value is 65535.

Note that if the conditional filter is also active, the conditional filter is applied first.

7.3.

TimeTagger classes 55

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

Time Tagger User Manual, Release 1.2.3-local-build

Parameters
¢ channel (int) — Physical channel number
e divider (int) — Divider factor, max. 65535

getEventDivider (channel)

Gets the event divider filter factor for the given channel.

Parameters
channel (int)— Channel number

Returns
Divider factor value

Return type
int

setInputImpedanceHigh (channel, state)

Note: Method is only available for the Time Tagger X.

Sets the input impedance to high-Z for the specified channel. By default the input impedance is 50 Ohm.
Parameters
¢ channel (int)— Channel number
* state (bool) — True/False

getInputImpedanceHigh (channel)

Note: Method is only available for the Time Tagger X.

Returns whether the input impedance is set to high-Z for the specified channel.

Parameters
channel (int) — Channel number

Returns
state of high input impedance

Return type
bool

setInputHysteresis (channel, value)

Note: Method is only available for the Time Tagger X.

Sets the input hysteresis value for the specified channel. Oscillations of the measured signal within the
hysteresis range around the trigger value are ignored and therefore do not trigger new events. Supported
values are 1 mV, 20 mV, 70 mV. Default input hysteresis value is 1 mV.

Parameters
¢ channel (int)— Channel number

* value (int) — hysteresis voltage value in mV (1, 20, 70)

56 Chapter 7. Application Programmer’s Interface

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Time Tagger User Manual, Release 1.2.3-local-build

getInputHysteresis(channel)

Note: Method is only available for the Time Tagger X.

Returns the voltage value in mV of the input hysteresis for the specified channel.

Parameters
channel (int)— Channel number

Returns
hysteresis voltage value in mV

Return type
int

setNormalization(channels, state)

Enables or disables Gaussian normalization of the detection jitter. Enabled by default.

Parameters
e channels (Iist[int]) — List of physical channel numbers
e state (bool) — True/False

getNormalization(channel)
Returns True if Gaussian normalization is enabled.

Returns
True/False

Return type
bool

setTestSignal (channels, state)
Connect or disconnect the channels with the on-chip uncorrelated signal generator.

Parameters
e channels (Iist[int]) — List of physical channel numbers
e state (bool) — True/False

getTestSignal (channel)
Returns true if the internal test signal is activated on the specified channel.

Parameters
channel (int) — Physical channel number

Returns
True/False

Return type
bool

getSerial)

Returns the hardware serial number.

Returns
Serial number string

Return type
str

7.3.

TimeTagger classes

57

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Time Tagger User Manual, Release 1.2.3-local-build

getModel O

Returns
Model name as string

Return type
str
getPcbVersion()

Returns Time Tagger PCB (Printed circuit board) version.

Returns
PCB version

Return type
str
getDACRange ()
Return a vector containing the minimum and the maximum DAC (Digital-to-Analog Converter) voltage
range for the trigger level.

Returns
Min and max voltage in Volt

Return type
(float, float)
getChannelList (type=ChannelEdge.All)
Returns a list of channels corresponding to the given fype.

Parameters
type (ChannelEdge) — Limits the returned channels to the specified channel edge type

Returns
List of channel numbers

Return type
list[int]
setHardwareBufferSize (size)

Sets the maximum buffer size within the Time Tagger. The default value is 64 MTags, but can be changed
within the range of 32 kTags to 512 MTags. Please note that this buffer can only be filled with a total data
rate of up to 500 MTags/s.

Note: Time Tagger 20 uses by default the whole buffer of 8 MTags, which can be filled with a total data
rate of up to 40 MTags/s.

Parameters
size (int) — Buffer size, must be a positive number

autoCalibration()

Run an auto-calibration of the Time Tagger hardware using the built-in test signal.

Returns
the list of jitter of each input channel in picoseconds based on the calibration data.

Return type
list[float]

58 Chapter 7. Application Programmer’s Interface

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

Time Tagger User Manual, Release 1.2.3-local-build

getDistributionCount ()

Returns the calibration data represented in counts.

Returns
Distribution data

Return type
2D_array[int]

getDistributionPSec()

Returns the calibration data in picoseconds.

Returns
Calibration data

Return type
2D_array[int]
getPsPerClock()
Returns the duration of a clock cycle in picoseconds. This is the inverse of the internal clock frequency.

Returns
Clock period in picoseconds

Return type
int
setStreamBlockSize (max_events=131072, max_latency=20)

This option controls the latency and the block size of the data stream. Depending on which of the two
parameters is exceeded first, the block stream size is adjusted accordingly.

Note: The block size will be reduced even further when no new tag arrives within roughly 1-2 ps.

Parameters

e max_events (int) — maximum number of events within one block (256 - 32M), default:
131072 events

* max_latency (int) — maximum latency in milliseconds for constant input rates (1 to
10000), default: 20 ms.

setTimeTaggerNetworkStreamCompression (active)

Enables/disables the compression of TimeTags before they are streamed from the server to the clients.
Activation can be helpful for slow network environments (<= 100 MBit/s) if the bandwidth is the limiting
factor. For instance, the amount of streamed data of periodic signals is reduced by about a factor of 2.
The compression, on the other hand, leads to increased CPU utilization and is not advantageous for fast
networks (>= 1 GBit/s).

Parameters
active (bool) — flag defining whether the compression is enabled (default: False).

setTestSignalDivider (divider)
Change the frequency of the on-chip test signal.

For the Time Tagger X, the base frequency is 333 MHz and the default divider 375 corresponds to ~890
kCounts/s.

For the Time Tagger Ultra, the base frequency is 50 MHz and the default divider 63 corresponds to ~800
kCounts/s.

7.3.

TimeTagger classes 59

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Time Tagger User Manual, Release 1.2.3-local-build

For the Time Tagger 20, the base frequency is 62.5 MHz and the default divider 74 corresponds to ~850
kCounts/s.

Parameters
divider (int) — Division factor
getTestSignalDivider()

Returns the value of test signal division factor.

getDeviceLicense()
Returns a JSON formatted string (dict in Python) containing license information of the Time Tagger device,
for instance, model, edition, and available channels.

Returns
License information

Return type
dict
getSensorData()
Prints all available sensor data for the given board. The Time Tagger 20 has no onboard sensors.

Returns
Tabulated sensor data

Return type
Str
disableLEDs (state)
Disables all channel LEDs and back LEDs. The disabling of the power button LED will follow in the
upcoming release.

Parameters
state (bool) — True/False

setLED (bitmask)

Manually change the state of the Time Tagger LEDs. The power LED of the Time Tagger 20 cannot be
programmed by software.

Example:

Turn off all LEDs
tagger.setLED(0x01FFO000)

Restore normal LEDs operation
tagger.setLED(0)

0 -> LED off

1->LED on

illumination bits

0-2: status, rgb - all Time Tagger models
3-5: power, rgb - Time Tagger Ultra only
6-8: clock, rgb - Time Tagger Ultra only

0 -> normal LED behavior, not overwritten by setLED
1 -> LED state is overwritten by the corresponding bit of 0-8

60 Chapter 7. Application Programmer’s Interface

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Time Tagger User Manual, Release 1.2.3-local-build

mask bits

16-18: status, rgb - all Time Tagger models
19-21: power, rgb - Time Tagger Ultra only
22-24: clock, rgb - Time Tagger Ultra only

Parameters
bitmask (int)— LED bitmask.

setSoundFrequency (freq_hz)

Set the Time Tagger’s internal buzzer to a frequency in Hz.

Parameters
freq_hz (int) — The sound frequency in Hz, use O to switch the buzzer off.

startServer (access_mode, channels=[], port=41101)

Start a Time Tagger server that can be accessed via TimeTaggerNetwork. The server access mode controls
if the clients are allowed to change the hardware parameters. See also: Accesslode.

Parameters

¢ access_mode (AccessMode) — AccessMode in which the server should run. Either con-
trol or listen

e channels (list[int]) - Channels to be streamed. Used only when
access_mode=AccessMode.Listen

» port (int)— Port at which this Time Tagger server will be listening on.

Raises
RuntimeError — if server is already running.

stopServer()

Stop the Time Tagger server if currently running, otherwise do nothing.

isServerRunning ()

Returns
True is server is running and False otherwise.

Return type
bool

Note: The following xtra methods are mainly for development purposes and may be discontinued in future
software versions without further notice. These methods are only available for the Time Tagger X.

xtra_setAuxOut (channel, state)
Enables/Disables the Aux Out signal for the specified Aux channel.

Parameters
¢ channel (int)— Aux channel number
e state (bool) — True/False

xtra_getAuxOut (channel)
Returns whether the Aux Out signal is enabled for the specified Aux channel.

Returns
State of the Aux Out signal

7.3.

TimeTagger classes 61

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Time Tagger User Manual, Release 1.2.3-local-build

Return type
bool

xtra_setAuxOutSignal (channel, divider, duty_cylce)
Sets the signal shape, i.e., duty cycle and frequency, of the Aux out signal for the specified Aux channel.

Parameters
¢ channel (int) - Aux channel number
¢ divider (int) — Divider of the Aux Out base signal frequency (333 MHz)
¢ duty_cycle (float)— The duty cycle of the aux signal
xtra_getAuxOutSignalDivider (channel):
Returns the divider for the frequency of the Aux Out signal generator or the specified Aux channel.

Parameters
channel (int) — Aux channel number

Returns
Divider for the frequency of the Aux Out signal generator

Return type
int
xtra_getAuxOutSignalDutyCycle (channel)
Returns the duty cycle of the Aux Out signal for the specified Aux channel.

Parameters
channel (int)— Aux channel number

Returns
Duty cycle of the Aux Out signal generator

Return type
float
xtra_measureTriggerLevel (channel)
Measures and returns the applied voltage threshold of the specified channel.

Parameters
channel (int) — Channel number

Returns
Applied voltage threshold of a channel

Return type
float
xtra_setClockSource (source)

Specifies the different clock sources: O - internal clock , 1 - external clock 10 Mhz, 2 - external clock 500
MHz.

Parameters
source (int) — Number of the clock source. Allowed values: 0, 1, 2

xtra_getClockSource()
Returns the used clock source: O - internal clock , 1 - external clock 10 Mhz, 2 - external clock 500 MHz.

Returns
Number of the clock source

62 Chapter 7. Application Programmer’s Interface

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

Time Tagger User Manual, Release 1.2.3-local-build

Return type
int
xtra_setClockAutoSelect (state)

Enables/Disables the auto clocking function.

Parameters
state (bool) — True/False

xtra_getClockAutoSelect ()

Returns whether the auto clocking function is enabled.

Returns
State of auto clocking

Return type
bool

xtra_setClockOut (state)
Activates/Deactivates the 10 MHz clock output.

Parameters
state (bool) — True/False

7.3.3 The TimeTaggerVirtual class

In the Time Tagger software version 2.6.0, we have introduced the new TimeTaggerVirtual, which allows replaying
earlier stored time-tag dump files. Using the virtual Time Tagger, you can repeat your experiment data analysis with
different parameters or even perform different measurements.

Note: The virtual Time Tagger requires a free software license, which is automatically acquired from the Swabian
Instruments license server when createTimeTagger () or createTimeTaggerVirtual() is called while a Time
Tagger is attached. Once received, the license is permanently stored on this PC and the Virtual Time Tagger will work
without Time Tagger hardware attached.

class TimeTaggerVirtual
Base class: TimeTaggerBase
replay (file, begin=0, duration=-1, queue=True)

Replay a dump file specified by its path file or add it to the replay queue. If the flag queue is false, the
current queue will be discarded and file will be replayed immediately.

The file parameter can specify a header file or single specific file as shown in the following example.

Assume we have following the files in the current directory:
filename.ttbin

filename.l.ttbin

filename.2.ttbin

Replay all files named "filename.NN.ttbin" sequentially
virtual_tagger.replay('filename.ttbhin')

Replay a single file "filename.l.ttbin"
virtual_tagger.replay('filename.1l.ttbin")

See also: FileWriter, FileReader, and mergeStreamFiles().

7.3. TimeTagger classes 63

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Time Tagger User Manual, Release 1.2.3-local-build

Parameters
e file (str) — the file to be replayed

* begin (int) — duration in picoseconds to skip at the beginning of the file. A negative time
will generate a pause in the replay.

 duration (int) - duration in picoseconds to be read from the file. duration=-1 will replay
everything. (default: -1)

* queue (bool) — flag if this file shall be queued. (default: True)

Returns
ID of the queued file

Return type
int

stop(O
This method stops the current file and clears the replay queue.

waitForCompletion([ID=0, timeout=-1])
Blocks the current thread until the replay is completed.

This method blocks the current execution and waits until the given file has finished its replay. If no ID is
provided, it waits until all queued files are replayed.

This function does not block on a zero timeout. Negative timeouts are interpreted as infinite timeouts.
Parameters
e ID (int) — selects which file to wait for. (default: 0)
e timeout (int) — timeout in milliseconds

Returns
true if the file is complete, false on timeout

Return type
bool
setReplaySpeed (speed)
Configures the speed factor for the virtual tagger.
A value of speed=1.0 will replay at a real-time rate. All speed values < 0.0 will replay the data as fast as

possible but stops at the end of all data. This is the default value. Extreme slow replay speed between 0.0
and 0.1 is not supported.

Parameters
speed (float) - replay speed factor.

getReplaySpeed ()
Returns the current speed factor.
Please see also setReplaySpeed() for more details.

getConfiguration()

Returns a JSON formatted string (dict in Python) containing information on the TimeTaggerVirtual instance
and on the real Time Tagger settings stored in the current time tag stream file.

64 Chapter 7. Application Programmer’s Interface

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

Time Tagger User Manual, Release 1.2.3-local-build

7.3.4 The TimeTaggerNetwork class

In the Time Tagger software version 2.10, we have introduced a way of sending the time-tag stream to other applications
and even remote computers for independent processing. We call this feature Network Time Tagger. You can use it with
any Time Tagger hardware device by starting the time-tag stream server with TimeTagger.startServer(). Once
the server is running, the clients can connect to it by calling createTimeTaggerNetwork () and specifying the server
address. A client can be any computer that can access the server over the network or another process on the same
computer. It is also possible to run the server and client on different operating systems or use different programming
languages.

Note on performance

The Network Time Tagger server sends a time tag stream in a compressed format requiring about 4 bytes per time
tag. Every client receives the data only from the channels required by the client. The maximum achievable data rate
will depend on multiple factors, like server and client CPU performance, operating system, network adapter used, and
network bandwidth, as well as the whole network infrastructure.

In a 1 Gbps Ethernet network, it is possible to achieve about 26 MTags/second of the total outgoing data rate from the
server. Note that this bandwidth is shared among all clients connected. Likewise, a 10 Gbps Ethernet network allows
reaching higher data rates while having more clients. In our tests, we reached up to 40 MTags/s per client.

When you run the server and the client on the same computer, the speed of the network adapters installed on your
system becomes irrelevant. In this case, the operating system sends the data directly from the server to the client.

class TimeTaggerNetwork

Base class: TimeTaggerBase

Note: Although the TimeTaggerNetwork formally inherits from TimeTaggerBase, almost all methods of
the hardware Time Tagger TimeTagger are available on the client (except for TimeTagger.startServer()
and TimeTagger.stopServer()). These redundant methods are not listed in this section. A call to a method
that exists on TimeTagger will be forwarded to the server. If a method with similar functionality exists on
the TimeTaggerNetwork only, it can be distinguished by the suffix ... Client. If the server is running in
AccessMode.Listen and a method call forwarded to the server would cause setting changes on the server-side,
the call will raise an exception on the client.

This scheme of forwarding may lead to unexpected behavior: If the server is started in AccessMode. Listen with
a restricted set of channels and you call TimeTagger.getChannellList () on the client side, not all channels
returned by this method can be accessed. You can request the list of accessible channels from the server with
getTimeTaggerServerInfo().

The TimeTaggerNetwork represents a client-side of the Network Time Tagger and provides access to the Time
Tagger server. A server can be created on any physical Time Tagger by calling TimeTagger.startServer().
The TimeTaggerNetwork object is created by calling createTimeTaggerNetwork ().

isConnected()

Check if the Network Time Tagger is currently connected to a server.

Returns
True/False

Return_type
bool

setDelayClient (channel, delay)

Sets an artificial software delay per channel on the client side. To specify it on the server side, see

7.3. TimeTagger classes 65

Time Tagger User Manual, Release 1.2.3-local-build

setDelaySoftware() or setDelayHardware () (Time Tagger Ultra only). This delay will be applied
only on this object and will not affect the server settings or delays at any other clients connected to the same
Time Tagger server.

Parameters
¢ channel (int) — Channel number
¢ delay (int) — Delay time in picoseconds
getDelayClient (channel)
Returns the value of the delay applied on the client-side in picoseconds for the specified channel.

Parameters
channel (int) — Channel number

Returns
input delay in picoseconds

Return_type
int
clearOverflowsClient ()
Clears the overflow counter on the client-side. A call to getOverflows () will return the information as it
is available on the server. See getOverflowsClient () for more information on client-side overflows.
getOverflowsClient ()

If the server is not able to send all the time-tags to the client, e.g. due to limited network bandwidth, the
time-tag stream switches to the overflow mode. This means that the client might experience additional
overflow events that are not originating from the hardware. This counter counts all overflows occurred on
the hardware and on the server since the client connection or last call to clearOverflowsClient () or
getOverflowsAndClearClient ().

Returns
The value of the client-side overflow counter.

Return_type
int
getOverflowsAndClearClient ()

The same as getOverflowsClient() but also clears the client-side counter. See
getOverflowsClient () for more information on client-side overflows.

7.3.5 Additional classes

class SoftwareClockState
The SoftwareClockState object contains the current configuration state:
clock_period: int
The rounded clock period matching the input frequency set in TimeTaggerBase.setSoftwareClock().
input_channel: int
The physical input channel of the software clock set in TimeTaggerBase.setSoftwareClock().

ideal_clock_channel: int

A virtual channel number to receive the ideal clock tags. During a locking period, these tags are separated
by clock_period by definition. To receive the rescaled measured clock tags, use clock_channel.

66 Chapter 7. Application Programmer’s Interface

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Time Tagger User Manual, Release 1.2.3-local-build

averaging_periods: float
The averaging periods set in TimeTaggerBase.setSoftwareClock().

enabled: bool

Indicates whether the software clock is active or not.
Beyond the configuration state, the object provides current runtime information of the software clock:
is_locked: bool

Indicates whether the PLL of the software clock was able to lock to the input signal.
error_counter: int

Amount of locking errors since the last TimeTaggerBase.setSoftwareClock() call.
last_ideal_clock_event: int

Timestamp of the last ideal clock event in picoseconds.
period_error: float

Current deviation of the measured clock period from the ideal period given by clock_period.

phase_error_estimation: float

Current root of the squared differences of clock_input timestamps and ideal clock timestamps. This value
includes the discretization noise of the clock_input channel.

7.4 Virtual Channels

Virtual channels are software-defined channels as compared to the real input channels. Virtual channels can be under-
stood as a stream flow processing units. They have an input through which they receive time-tags from a real or another
virtual channel and output to which they send processed time-tags.

Virtual channels are used as input channels to the measurement classes the same way as real channels. Since the
virtual channels are created during run-time, the corresponding channel number(s) are assigned dynamically and can
be retrieved using getChannel () or getChannels () methods of virtual channel object.

7.4.1 Available virtual channels

Note: In MATLAB, the Virtual Channel names have common prefix TT*. For example: Combiner is named as
TTCombiner. This prevents possible name collisions with existing MATLAB or user functions.

Combiner
Combines two or more channels into one.

ConstantFractionDiscriminator
Detects rising and falling edges of an input pulse and returns the average time.

Coincidence
Detects coincidence clicks on two or more channels within a given window.

Coincidences
Detects coincidence clicks on multiple channel groups within a given window.

DelayedChannel
Clones input channels which can be delayed.

7.4. Virtual Channels 67

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Time Tagger User Manual, Release 1.2.3-local-build

FrequencyMultiplier
Frequency Multiplier for a channel with a periodic signal.

GatedChannel
Transmits signals of an input_channel depending on the signals arriving at gate_start _channel and
gate_stop_channel.

EventGenerator
Generates a signal pattern for every trigger signal.

TriggerOnCountrate
Generates an event when the count rate of a given channel crosses given threshold value.

7.4.2 Common methods

VirtualChannel.getChannel ()
VirtualChannel.getChannels()

Returns the channel number(s) corresponding to the virtual channel(s). Use this channel number the very same
way as the channel number of physical channel, for example, as an input to a measurement class or another virtual
channel.

Important: Virtual channels operate on the time tags that arrive at their input. These time tags can be from
rising or falling edges of the physical signal. However, the virtual channels themselves do not support such a
concept as an inverted channel.

getConfiguration()

Returns configuration data of the virtual channel object. The configuration includes the name, values of
the current parameters and the channel numbers. Information returned by this method is also provided with
TimeTaggerBase.getConfiguration().

Returns
Configuration data of the virtual channel object.

Return type
dict

7.4.3 Combiner

channel A 4 T T T T
® ® ® ® ® ® ® ®
channel B A
® ® ® ® ® ® ® ®
Combiner A T T T T
0 10 20 30 40 50 60 70 80
Time (ns)

Combines two or more channels into one. The virtual channel is triggered, e.g., for two channels when either channel
A OR channel B received a signal.

68 Chapter 7. Application Programmer’s Interface

https://docs.python.org/3/library/stdtypes.html#dict

Time Tagger User Manual, Release 1.2.3-local-build

class Combiner (tagger, channels=[])

Parameters
* tagger (TimeTaggerBase) — time tagger object instance
* channels (1ist[int]) — List of channels to be combined into a single virtual channel

See all common methods

7.4.4 Coincidence

I

0 10 20 30 40 50 60 70 80
Time (ns)

Detects coincidence clicks on two or more channels within a given window. The virtual channel is triggered, e.g., when
channel A AND channel B received a signal within the given coincidence window. The timestamp of the coincidence
on the virtual channel is the time of the last event arriving to complete the coincidence.

class Coincidence (tagger, channels, coincidence Window=1000, timestamp=CoincidenceTimestamp.Last)

Parameters
* tagger (TimeTaggerBase) — time tagger object instance

e channels (list[int]) — list of channels on which coincidence will be detected in the
virtual channel

* coincidenceWindow (int) — maximum time between all events for a coincidence [ps]
* timestamp (CoincidenceTimestamp) — type of timestamp for virtual channel

See all common methods

7.4.5 Coincidences

Detects coincidence clicks on multiple channel groups within a given window. If several different coincidences are
required with the same window size, Coincidences provides better performance in comparison to multiple virtual
Coincidence channels. The number of coincidence groups is limited to 64 per Coincidences object.

Example code:

from TimeTagger import Coincidences, Coincidences, CoincidenceTimestamp

coinc = Coincidences(tagger, [[1,2], [2,3,5]], coincidenceWindow=10000, .
—timestamp=CoincidenceTimestamp.ListedFirst)
coinc_chans = coinc.getChannels()

(continues on next page)

7.4. Virtual Channels 69

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Time Tagger User Manual, Release 1.2.3-local-build

(continued from previous page)

coincl_ch coinc_chans[0] # double coincidence in channels [1,2] with timestamp of.
—channel
coinc2_ch = coinc_chans[1] # triple coincidence in channels [2,3,5] with timestamp of.

—channel 2

~ |l

or equivalent but less performant

coincl = Coincidence(tagger, [1,2], coincidenceWindow=10000,..
—timestamp=CoincidenceTimestamp.ListedFirst)

coinc2 = Coincidence(tagger, [2,3,5], coincidenceWindow=10000, ..
—timestamp=CoincidenceTimestamp.ListedFirst)

coincl_ch = coincl.getChannel() # double coincidence in channels [1,2] with timestamp.
—of channel 1

coinc2_ch = coinc2.getChannel() # triple coincidence in channels [2,3,5] with timestamp.,
—o0f channel 2

Note: Only C++ and python support jagged arrays (array of arrays, like uint[][]) which are required to combine several
coincidence groups and pass them to the constructor of the Coincidences class. Hence, the API differs for Matlab, which
requires a cell array of 1D vectors to be passed to the constructor (see Matlab examples provided with the installer).
For LabVIEW, a CoincidencesFactory-Class is available to create a Coincidences object, which is also shown in the
LabVIEW examples provided with the installer).

class Coincidences(tagger, coincidenceGroups, coincidenceWindow, timestamp)

Parameters
* tagger (TimeTaggerBase) — time tagger object instance

» coincidenceGroups (I1ist[list[int]]) — list of channel groups on which coincidence
will be detected in the virtual channel

» coincidenceWindow (int) — maximum time between all events for a coincidence [ps]

e timestamp (CoincidenceTimestamp) — type of timestamp for virtual channel (Last, Av-
erage, First, ListedFirst)

See all common methods

7.4.6 FrequencyMultiplier

Fhefj‘#%?f;yr;) . . .TlT.IlT.TlI'TlT.IlT |

Frequency Multiplier for a channel with a periodic signal.

Note: Very high output frequencies create a high CPU load, eventually leading to overflows.

70 Chapter 7. Application Programmer’s Interface

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Time Tagger User Manual, Release 1.2.3-local-build

class FrequencyMultiplier (fagger, input_channel, multiplier)

Parameters
* tagger (TimeTaggerBase) — time tagger object instance
* input_channel (int) — channel on which the upscaling of the frequency is based on
e multiplier (int) — frequency upscaling factor

See all common methods

7.4.7 GatedChannel

I I N S N B B
! !

gate stop 4 T

e I N R B

0 10 20 30 40 50 60 70 80
Time (ns)

Transmits the signal from an input_channel to a new virtual channel between an edge detected at the gate_start_channel
and the gate_stop_channel.

class GatedChannel (tagger, input_channel, gate_start_channel, gate_stop_channel,
initial=GatedChannellnitial. Closed)

Parameters
* tagger (TimeTaggerBase) — Time Tagger object
e input_channel (int) — Channel which is gated

» gate_start_channel (int) — Channel on which a signal detected will start the transmis-
sion of the input_channel through the gate

* gate_stop_channel (int) - Channel on which a signal detected will stop the transmission
of the input_channel through the gate. Note that gate_stop_channel == gate_start_channel
will result in an exception.

» initial (GatedChannelInitial) — The initial state of the gate. If overflows occur, the
gate will be reset to this state as well. By default, the state is CIosed.

See all common methods

Note: If you assign the same channel to input_channel and to gate_start_channel or gate_stop_channel, respectively,
the internal execution order of the transmission decision and the gate operation (opening or closing) becomes important:
For each tag on the input_channel, the decision is made based on the previous state. After this decision is made for
itself, the tag might toggle the gate state.

7.4. Virtual Channels 71

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Time Tagger User Manual, Release 1.2.3-local-build

* input_channel == gate_stop_channel:
If the gate is open prior to the arrival of the tag, the tag will pass the gate and close it afterward. All
subsequent tags will be eliminated until an event on gate_start_channel opens the gate again. This means
that after the gate has been opened, only a single tag will pass the gate, which is exactly the behavior of
the Conditional Filter with with gate_start_channel acting as the trigger and input_channel acting as the
filtered channel.

* input_channel == gate_start_channel:
If the gate is open prior to the arrival of the tag, the tag itself will be blocked but opens the gate afterward.
All subsequent tags will pass the gate until an event on gate_stop_channel closes the gate again. This means
that every event on gate_stop_channel will eliminate exactly the next event on the input_channel.

This behavior has been changed in software version 2.10.8.

7.4.8 DelayedChannel

S R S R
Delayed I [[]

0 10 20 30 40 50 60 70 80
Time (ns)

Clones input channels, which can be delayed by a time specified with the delay parameter in the constructor or the
setDelay () method. A negative delay will delay all other events.

Note: If you want to set a global delay for one or more input channels, setInputDelay () is recommended as long
as the delays are small, which means that not more than 100 events on all channels should arrive within the maximum
delay set.

class DelayedChannel (tagger, input_channel, delay)

Parameters
* tagger (TimeTaggerBase) — time tagger object
* input_channel (int) — channel to be delayed
* delay (int) — amount of time to delay in ps
See all common methods

setDelay (delay)
Allows modifying the delay time.

Warning: Calling this method with a reduced delay time may result in a partial loss of the internally
buffered time tags.

Parameters
delay (int) — Delay time in picoseconds

72 Chapter 7. Application Programmer’s Interface

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Time Tagger User Manual, Release 1.2.3-local-build

7.4.9 ConstantFractionDiscriminator

input pulses A trigger level

pulse edges -

Constant
Fraction -
Discriminator
0 10 20 30 40 50 60 70 80
Time (ns)

Constant Fraction Discriminator (CFD) detects rising and falling edges of an input pulse and returns the average time
of both edges. This is useful in situations when precise timing of the pulse position is desired for the pulses of varying
durations and amplitudes.

For example, the figure above shows four input pulses separated by 15 nanoseconds. The first two pulses have equal
widths but different amplitudes, the middle two pulses have equal amplitude but different durations, and the last pulse
has a duration longer than the search_window and is therefore skipped. For such input signal, if we measure the time
of the rising edges only, we get an error in the pulse positions, while with CFD this error is eliminated for symmetric
pulses.

Note: The virtual CFD requires the time tags of the rising and falling edge. This leads to:
 The transferred data of the input channel is twice the regular input rate.
* When you shift the signal, e.g., via setInputDelay (), you have to shift both edges.

* When you use the conditional filter, apply the trigger from both channels.

class ConstantFractionDiscriminator (tagger, channels, search_window)

Parameters
* tagger (TimeTagger) — TimeTagger object
e channels (I1ist[int]) - list of channels on which to perform CFD
* search_window (int) — max pulse duration in picoseconds to be detected

See all common methods

7.4. Virtual Channels 73

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Time Tagger User Manual, Release 1.2.3-local-build

7.4.10 EventGenerator

EventGenerator (pattern=[0, 2000, 4000, 6000, 8000], trigger_divider=2)

wrl] [T] TTT [] TT T TT T
o 1 R A R A 0

0 10 20 30 40 50 60 70 80
Time (ns)

Emits an arbitrary pattern of timestamps for every trigger event. The number of trigger events can be reduced by
trigger_divider. The start of a new pattern does not abort the execution of unfinished patterns, so patterns may overlap.
The execution of all running patterns can be aborted by a click of the stop_channel, i.e. overlapping patterns can be
avoided by setting the stop_channel to the trigger_channel.

class EventGenerator (tagger, trigger_channel, pattern, trigger_divider, stop_channel)

Parameters
* tagger (TimeTaggerBase) — Time Tagger object instance.
* trigger_channel (int)— Channel number of the trigger signal.

* pattern (1ist[int]) — List of relative timestamps defining the pattern executed upon a
trigger event.

» trigger_divider (int) — Factor by which the number of trigger events is reduced. (de-
fault: 1)

» divider_offset (int) - If trigger_divider > 1, the divider_offset the number of trigger
clicks to be ignored before emitting the first pattern. (default: 0)

» stop_channel (int)— Channel number of the stop channel. (optional)

See all common methods

7.4.11 TriggerOnCountrate

Measures the count rate inside a rolling time window and emits tags when a defined reference_countrate is crossed.
A TriggerOnCountrate object provides two virtual channels: The above channel is triggered when the count rate
exceeds the threshold (transition from below to above). The below channel is triggered when the count rate falls below
the threshold (transition from above to below).

To avoid the emission of multiple trigger tags in the transition area, the hysteresis count rate modifies the threshold with
respect to the transition direction: An event in the above channel will be triggered when the channel is in the below
state and rises to reference_countrate + hysteresis or above. Vice versa, the below channel fires when the channel is in
the above state and falls to the limit of reference_countrate - hysteresis or below.

The time-tags are always injected at the end of the integration window. You can use the DelayedChannel to adjust
the temporal position of the trigger tags with respect to the integration time window.

The very first tag of the virtual channel will be emitted time_window after the instantiation of the object and will reflect
the current state, so either above or below.

74 Chapter 7. Application Programmer’s Interface

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Time Tagger User Manual, Release 1.2.3-local-build

TriggerOnCountrate(tagger, 1, 5000000, 625e3 [Hz], 100e3 [Hz])

owen [T T T LTI MOCCLIOC LT OO

Countrate .:_|_|1J'|-|______rn|]4=

inside i o I_H_I_ﬁ.l T g | f
window
] time_window reference_countrate

Channel | hysteresis
Above range
[] []
Channel |
Below
0 10 20 30 40 50 60 70 80
Time (us)

class TriggerOnCountrate (tagger, input_channel, reference_countrate, hysteresis, time_window)

Parameters
* tagger (TimeTaggerBase) — Time Tagger object instance.

e input_channel (int) — Channel number of the channel whose count rate will control the
trigger channels.

» reference_countrate (float) — The reference count rate in Hz that separates the above
range from the below range.

* hysteresis (float)— The threshold count rate in Hz for transitioning to the above thresh-
old state is countrate >= reference_countrate + hysteresis, whereas it is countrate <= ref-
erence_countrate - hysteresis for transitioning to the below threshold state. The hysteresis
avoids the emission of multiple trigger tags upon a single transition.

* time_window (int) — Rolling time window size in ps. The count rate is analyzed within
this time window and compared to the threshold count rate.

See all common methods

getChannelAbove ()

Get the channel number of the above channel.

getChannelBelow()

Get the channel number of the below channel.

getChannels()
Get both virtual channel numbers: [getChannelAbove (), getChannelBelow()]

getCurrentCountrate()

Get the current count rate averaged within the time_window.

injectCurrentState()

Emit a time-tag into the respective channel according to the current state. This is useful if you start a new
measurement that requires the information. The function returns whether it was possible to inject the event.
The injection is not possible if the Time Tagger is in overflow mode or the time window has not passed yet.
The function call is non-blocking.

7.4. Virtual Channels 75

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

Time Tagger User Manual, Release 1.2.3-local-build

isAbove()
Returns whether the Virtual Channel is currently in the above state.

isBelow()
Returns whether the Virtual Channel is currently in the below state.

7.5 Measurement Classes

The Time Tagger library includes several classes that implement various measurements. All measurements are derived
from a base class called IteratorBase that is described further down. As the name suggests, it uses the iterator
programming concept.

All measurements provide a set of methods to start and stop the execution and to access the accumulated data. In a
typical application, the following steps are performed (see example):

1. Create an instance of a measurement
2. Wait for some time

3. Retrieve the data accumulated by the measurement by calling a .getData() method.

7.5.1 Available measurement classes

Note: In MATLAB, the Measurement names have common prefix TT*. For example: Correlation is named as
TTCorrelation. This prevents possible name collisions with existing MATLAB or user functions.

Correlation
Auto- and Cross-correlation measurement.

CountBetweenMarkers
Counts tags on one channel within bins which are determined by triggers on one or two other channels. Uses a
static buffer output. Use this to implement a gated counter, a counter synchronized to external signals, etc.

Counter
Counts the clicks on one or more channels with a fixed bin width and a circular buffer output.

Countrate
Average tag rate on one or more channels.

Flim
Fluorescence lifetime imaging.

FrequencyStability
Analyzes the frequency stability of period signals.

IteratorBase
Base class for implementing custom measurements (only C++).

Histogram
A simple histogram of time differences. This can be used to measure lifetime, for example.

Histogram2D
A 2-dimensional histogram of correlated time differences. This can be used in measurements similar to 2D NRM
spectroscopy. (Single-Start, Single-Stop)

HistogramND
A n-dimensional histogram of correlated time differences. (Single-Start, Single-Stop)

76 Chapter 7. Application Programmer’s Interface

Time Tagger User Manual, Release 1.2.3-local-build

HistogramLogBins
Accumulates time differences into a histogram with logarithmic increasing bin sizes.

Scope
Detects the rising and falling edges on a channel to visualize the incoming signals similar to an ultrafast logic
analyzer.

StartStop
Accumulates a histogram of time differences between pairs of tags on two channels. Only the first stop tag after
a start tag is considered. Subsequent stop tags are discarded. The histogram length is unlimited. Bins and counts
are stored in an array of tuples. (Single-Start, Single-Stop)

TimeDifferences
Accumulates the time differences between tags on two channels in one or more histograms. The sweeping through
of histograms is optionally controlled by one or two additional triggers.

TimeDifferencesND
A multidimensional implementation of the TimeDifferences measurement for asynchronous next histogram trig-
gers.

SynchronizedMeasurements
Helper class that allows synchronization of the measurement classes.

Dump
Deprecated - please use Fileliriter instead. Dump measurement writes all time-tags into a file.

TimeTagStream
This class provides you with access to the time-tag stream and allows you to implement your own on-the-fly
processing. See Raw Time-Tag-Stream access to get on overview about the possibilities for the raw time-tag-
stream access.

Sampler
The Sampler class allows sampling the state of a set of channels via a trigger channel.

FileWriter
This class writes time-tags into a file with a lossless compression. It replaces the Dump class.

FileReader
Allows you to read time-tags from a file written by the Fileliriter.

7.5.2 Common methods

class IteratorBase

clear()
Discards accumulated measurement data, initializes the data buffer with zero values, and resets the state to
the initial state.

start()

Starts or continues data acquisition. This method is implicitly called when a measurement object is created.

startFor (duration [, clear=True])

Starts or continues the data acquisition for the given duration (in ps). After the duration time, the method
stop() is called and isRunning() will return False. Whether the accumulated data is cleared at the
beginning of startFor () is controlled with the second parameter clear, which is True by default.

stopQ)

After calling this method, the measurement will stop processing incoming tags. Use start() or
startFor () to continue or restart the measurement.

7.5. Measurement Classes 77

Time Tagger User Manual, Release 1.2.3-local-build

isRunning ()

Returns True if the measurement is collecting the data. This method will return False if the measurement
was stopped manually by calling stop () or automatically after calling startFor () and the duration has
passed.

Note: All measurements start accumulating data immediately after their creation.

Returns
True/False

Return type
bool

waitUntilFinished (¢imeout=-1)
Blocks the execution until the measurement has finished. Can be used with startFor().
Parameters

timeout (int) — timeout in milliseconds. Negative value means no timeout, zero returns
immediately.

Returns
True if the measurement has finished, False on timeout

Return type
bool
getCaptureDuration()
Total capture duration since the measurement creation or last call to clear().

Returns
Capture duration in ps

Return type
int
getConfiguration()

Returns configuration data of the measurement object. The configuration includes the measurement name,
and the values of the current parameters. Information returned by this method is also provided with
TimeTaggerBase.getConfiguration().

Returns
Configuration data of the measurement object.

Return type
dict

7.5.3 Event counting

78 Chapter 7. Application Programmer’s Interface

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

Time Tagger User Manual, Release 1.2.3-local-build

Countrate

Countrate

signal
—

T T

0 100 200 300

400 500 600 700 800
Time (ns)

getData() = counts / time
=7 /800ns
=8

750 000 counts / second

Measures the average count rate on one or more channels. Specifically, it determines the counts per second on the spec-
ified channels starting from the very first tag arriving after the instantiation or last call to cIear () of the measurement.
The Countrate works correctly even when the USB transfer rate or backend processing capabilities are exceeded.

class Countrate(tagger, channels)

Parameters

* tagger (TimeTaggerBase) — time tagger object instance

e channels (1ist[int]) - channels for which the average count rate is measured

See all common methods

getData()

Returns

Average count rate in counts per second.

Return type
1D_array[float]

getCountsTotal)

Returns

The total number of events since the instantiation of this object.

Return type
1D_array[int]

7.5. Measurement Classes

79

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

Time Tagger User Manual, Release 1.2.3-local-build

Counter

Counter (n_bins=4, binwidth=50)

[1] I

signal
o =
—

0 50 100 150 200 250 time (ps)

c 1.0
—~ 0
o
2205 3 0 1 2 147 |
,q; E _not fully
(@) [} |ntegrated

o bin

o 0.0 T T T T T A

0 1 2 3 #bin

Time trace of the count rate on one or more channels. Specifically, this measurement repeatedly counts tags within
a time interval binwidth and stores the results in a two-dimensional array of size number of channels by n_values.
The incoming data is first accumulated in a not-accessible bin. When the integration time of this bin has passed, the
accumulated data is added to the internal buffer, which can be accessed via the getData... methods. Data stored in the
internal circular buffer is overwritten when n_values are exceeded. You can prevent this by automatically stopping the
measurement in time as follows counter.startFor(duration=binwidth*n_values).

class Counter (tagger, channels, binwidth, n_values)
Parameters
* tagger (TimeTaggerBase) — time tagger object
» channels (Iist[int]) — channels used for counting tags
* binwidth (int) — bin width in ps
e n_values (int) — number of bins (data buffer size)
See all common methods

getData([rolling=True])

Returns an array of accumulated counter bins for each channel. The optional parameter rolling, controls if
the not integrated bins are padded before or after the integrated bins.

When rolling=True, the most recent data is stored in the last bin of the array and every new completed
bin shifts all other bins right-to-left. When continuously plotted, this creates an effect of rolling trace plot.
For instance, it is useful for continuous monitoring of countrate changes over time.

When rolling=False, the most recent data is stored in the next bin after previous such that the array is
filled up left-to-right. When array becomes full and the Counter is still running, the array index will be
reset to zero and the array will be filled again overwriting previous values. This operation is sometimes

called “sweep plotting”.
Parameters
rolling (bool) — Controls how the counter array is filled.

Returns

An array of size ‘number of channels’ by n_values containing the counts in each fully inte-
grated bin.

80 Chapter 7. Application Programmer’s Interface

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Time Tagger User Manual, Release 1.2.3-local-build

Return type
2D_array[int]

getIndex()

Returns
A vector of size n_values containing the time bins in ps.

Return type
1D_array[int]
getDataNormalized([rolling=True])
Does the same as getData() but returns the count rate in Hz as a float. Not integrated bins and bins in
overflow mode are marked as NaN.

Return type
2D_array|[float]
getDataTotalCounts()

Returns total number of events per channel since the last call to cIear (), including the currently integrating
bin. This method works correctly even when the USB transfer rate or backend processing capabilities are
exceeded.

Returns
Number of events per channel.

Return type
1D_array[int]
getDataObject (remove=False)
Returns CounterData object containing a snapshot of the data accumulated in the Counter at the time
this method is called.

Parameters
remove (bool) — Controls if the returned data shall be removed from the internal buffer.

Returns
An object providing access to a snapshot data.

Return type
CounterData

class CounterData

Objects of this class are created and returned by Counter.getDataObject (), and contain a snapshot of the
data accumulated by the Counter measurement.

size: int
Number of returned bins.

dropped_bins: int

Number of bins which have been dropped because n_values of the Counter has been exceeded.

overflow: bool

Status flag for whether any of the returned bins have been in overflow mode.

getIndex()

Returns
A vector of size size containing the time bins in ps.

Return type
1D_array[int]

7.5. Measurement Classes 81

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

Time Tagger User Manual, Release 1.2.3-local-build

getData()

Returns
An array of size ‘number of channels’ by size containing only fully integrated bins.

Return type
2D_array[int]
getDataNormalized()
Does the same as getData () but returns the count rate in counts/second. Bins in overflow mode are marked
as NaN.

Return type
2D_array[float]
getDataTotalCounts()

Returns the total number of events per channel since the last call to clear(), excluding the counts of
the internal bin where data is currently integrated into. This method works correctly even when the USB
transfer rate or backend processing capabilities are exceeded.

Returns
Number of events per channel.

Return type
1D_array[int]

getTime ()
Returns

A vector of size size containing the time corresponding to the return value of CounterData.
getData() in ps.

Return type
1D_array[int]

getOverflowMask()
Array of values for each bin that indicate if an overflow occurred during accumulation of the respective bin.

Returns
An array of size size containing overflow mask.

Return type
1D_array[int]

82 Chapter 7. Application Programmer’s Interface

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Time Tagger User Manual, Release 1.2.3-local-build

CountBetweenMarkers
t=0 Count Between Markers time
begin click click click begin click click click click begin
getData() I data[0] =3 I data[l] =4 I
t=0 Gated Counter time
begin click click end click begin click click end click click begin
L 4 L 4 L 4
1 1 1
1 1 1
1 1 1
1 1 1
getData() I data[0] =2 I I data[l] =2 I I

Counts events on a single channel within the time indicated by a “start” and “stop” signals. The bin edges between
which counts are accumulated are determined by one or more hardware triggers. Specifically, the measurement records
data into a vector of length n_values (initially filled with zeros). It waits for tags on the begin_channel. When a tag
is detected on the begin_channel it starts counting tags on the click_channel. When the next tag is detected on the
begin_channel it stores the current counter value as the next entry in the data vector, resets the counter to zero and
starts accumulating counts again. If an end_channel is specified, the measurement stores the current counter value and
resets the counter when a tag is detected on the end_channel rather than the begin_channel. You can use this, e.g., to
accumulate counts within a gate by using rising edges on one channel as the begin_channel and falling edges on the
same channel as the end_channel. The accumulation time for each value can be accessed via getBinWidths (). The
measurement stops when all entries in the data vector are filled.

class CountBetweenMarkers (fagger, click_channel, begin_channel, end_channel, n_values)

Parameters
* tagger (TimeTaggerBase) — time tagger object

* click_channel (int) — channel on which clicks are received, gated by begin_channel and
end_channel

* begin_channel (int)— channel that triggers the beginning of counting and stepping to the
next value

* end_channel (int) — channel that triggers the end of counting (optional, default:
CHANNEL_UNUSED)

e n_values (int) — number of values stored (data buffer size)
See all common methods

getData()

Returns
Array of size n_values containing the acquired counter values.

Return type
1D_array[int]

getIndex()

7.5. Measurement Classes 83

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Time Tagger User Manual, Release 1.2.3-local-build

Returns

Vector of size n_values containing the time in ps of each start click in respect to the very first
start click.

Return type
1D_array[int]

getBinWidths ()

Returns

Vector of size n_values containing the time differences of ‘start -> (next start or stop)’ for the
acquired counter values.

Return type
1D_array[int]

ready ()
Returns
True when the entire array is filled.

Return type
bool

7.5.4 Time histograms

This section describes various measurements that calculate time differences between events and accumulate the results
into a histogram.

StartStop
StartStop
= start start click click start click
o
[}
dt dt
_—
0 100 200 300 400 500
time (ps)
T
©
[a]
©
[@)]
0 50 100 150 200 250 9getData()

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 #bin

A simple start-stop measurement. This class performs a start-stop measurement between two channels and stores the
time differences in a histogram. The histogram resolution is specified beforehand (binwidth) but the histogram range
(number of bins) is unlimited. It is adapted to the largest time difference that was detected. Thus, all pairs of subsequent

clicks

are registered. Only non-empty bins are recorded.

84

Chapter 7. Application Programmer’s Interface

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Time Tagger User Manual, Release 1.2.3-local-build

class StartStop (tagger, click_channel, start_channel, binwidth)

Parameters
* tagger (TimeTaggerBase) — time tagger object instance
* click_channel (int) — channel on which stop clicks are received
e start_channel (int) — channel on which start clicks are received
* binwidth (int) — bin width in ps

See all common methods

getData()
Returns
An array of tuples (array of shape Nx2) containing the times (in ps) and counts of each bin.
Only non-empty bins are returned.
Return type
2D_array[int]
Histogram
Histogram
T start click start start click click
S ® ® ® ®
=) dtl dt2
@ \ \ dt3
\\ dt4 N\ N
\\ \\ \\ dt5 \\\
\ T T \ T \\ \\ \\ T
0 \ 100 200 \ 300 NN\ N, 400 500
\ time (ps) \ N\ N
\ \,
\\
\,
\,
\,
\,
] \,
© \\
2 h
a \, AN
i \
(o] \\ \\
2 .
0 50 100 150 200 250 9getindex()

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 #bin

Accumulate time differences into a histogram. This is a simple multiple start, multiple stop measurement. This is a
special case of the more general TimeDifferences measurement. Specifically, the measurement waits for clicks on the
start_channel, and for each start click, it measures the time difference between the start clicks and all subsequent clicks
on the click_channel and stores them in a histogram. The histogram range and resolution are specified by the number
of bins and the bin width specified in ps. Clicks that fall outside the histogram range are ignored. Data accumulation
is performed independently for all start clicks. This type of measurement is frequently referred to as a ‘multiple start,
multiple stop’ measurement and corresponds to a full auto- or cross-correlation measurement.

class Histogram(tagger, click_channel, start_channel, binwidth, n_bins)
Parameters

* tagger (TimeTaggerBase) — time tagger object instance

7.5. Measurement Classes 85

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Time Tagger User Manual, Release 1.2.3-local-build

e click_channel (int) — channel on which clicks are received
e start_channel (int) — channel on which start clicks are received
* binwidth (int) — bin width in ps
* n_bins (int) — the number of bins in the histogram
See all common methods

getData()

Returns
A one-dimensional array of size n_bins containing the histogram.

Return type
1D_array[int]

getIndex()

Returns
A vector of size n_bins containing the time bins in ps.

Return type
1D_array[int]

HistogramLogBins

The HistogramLogBins measurement is similar to Histogram but the bin widths are spaced logarithmically.

86 Chapter 7. Application Programmer’s Interface

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Time Tagger User Manual, Release 1.2.3-local-build

Uniformly distributed time differences

g R e W T e T

P °°° s 100 °°°°°(PE ° X!
e|le o L o 2 L | B
o'° ° . '30'0'0'0? ° . J i o e 1 | 4 -
10t 107 103 104
Counts per bin

5

©

a

()

D

10! 102 103 10* getBinEdges()

Counts per bin / binwidth

=1

[0

N

©

£

o

=2

©

©

a)

©

()]

10! 102 103 10% getBinEdges()

0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 #pin

class HistogramLogBins

Parameters
* tagger (TimeTaggerBase) — time tagger object instance
e click_channel (int) — channel on which clicks are received
e start_channel (int) — channel on which start clicks are received
» exp_start (flIoat) —exponent 104exp_start in seconds where the very first bin begins
* exp_stop (float) — exponent 104exp_stop in seconds where the very last bin ends

* n_bins (int) — the number of bins in the histogram

Note: After initializing the measurement (or after an overflow) no data is accumulated in the histogram until
the full histogram duration has passed to ensure a balanced count accumulation over the full histogram.

See all common methods

getData()

Returns
A one-dimensional array of size n_bins containing the histogram.

7.5. Measurement Classes 87

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

Time Tagger User Manual, Release 1.2.3-local-build

Return type
1D_array[int]

getDataNormalizedCountsPerPs ()

Returns
The counts normalized by the binwidth of each bin.

Return type
1D_array([float]
getDataNormalizedG2 ()

The counts normalized by the binwidth of each bin and the average count rate. This matches the imple-
mentation of Correlation.getDataNormalized()

At
@) —
970 = pmwidin(r) Ny

- histogram(T)

where At is the capture duration, N1 and Ny are number of events in each channel.

Returns
The counts normalized by the binwidth of each bin and the average count rate.

Return type
1D_array[float]

getBinEdges ()

Returns
A vector of size n_bins+1 containing the bin edges in picoseconds.

Return type
1D_array[int]

Histogram2D

Signal Histogram 2D
250
start start
200 A
start -

1 1 5 +1
i i S 150 -
! click ! click !
H [[0}
I I ©

stoplq {-—-- ->T s > T <
t t o 100 A
| [o
| | > +1
i click E click
! | 50 -

stop2q === —>T jm=mm e > T
' . ; : 0

0 100 200 300 400 0 50 100 150 200 250
time (ps) getindex_1()

This measurement is a 2-dimensional version of the Histogram measurement. The measurement accumulates a two-
dimensional histogram where stop signals from two separate channels define the bin coordinate. For instance, this kind

88 Chapter 7. Application Programmer’s Interface

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

Time Tagger User Manual, Release 1.2.3-local-build

of measurement is similar to that of typical 2D NMR spectroscopy. The data within the histogram is acquired via a
single-start, single-stop analysis for each axis. The first stop click of each axis is taken after the start click to evaluate
the histogram counts.

class Histogram2D (tagger, start_channel, stop_channel_1, stop_channel_2, binwidth_1, binwidth_2, n_bins_1,

n_bins_2)

Parameters

* tagger (TimeTaggerBase) — time tagger object
e start_channel (int) — channel on which start clicks are received
* stop_channel_1 (int) — channel on which stop clicks for the time axis 1 are received
* stop_channel_2 (int) — channel on which stop clicks for the time axis 2 are received
* binwidth_1 (int) — bin width in ps for the time axis 1
* binwidth_2 (int) — bin width in ps for the time axis 2
e n_bins_1 (int) — the number of bins along the time axis 1
* n_bins_2 (int) — the number of bins along the time axis 2

See all common methods

getData()

Returns
A two-dimensional array of size n_bins_I by n_bins_2 containing the 2D histogram.

Return type
2D_array[int]

getIndex()

Returns a 3D array containing two coordinate matrices (meshgrid) for time bins in ps for the time axes
1 and 2. For details on meshgrid please take a look at the respective documentation either for Matlab or
Python NumPy.

Returns
A three-dimensional array of size n_bins_I x n_bins_2 x 2

Return type
3D_array[int]

getIndex_10)

Returns
A vector of size n_bins_1I containing the bin locations in ps for the time axis 1.

Return type
1D_array[int]

getIndex_2Q)

Returns
A vector of size n_bins_2 containing the bin locations in ps for the time axis 2.

Return type
1D_array[int]

7.5.

Measurement Classes 89

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://www.mathworks.com/help/matlab/ref/meshgrid.html
https://numpy.org/doc/stable/reference/generated/numpy.meshgrid.html
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Time Tagger User Manual, Release 1.2.3-local-build

HistogramND

This measurement is the generalisation of Histogram2D to an arbitrary number of dimensions. The data within the
histogram is acquired via a single-start, single-stop analysis for each axis. The first stop click of each axis is taken after
the start click to evaluate the histogram counts.

HistogramND can be used as a 1D Histogram with single-start single-stop behavior.

class HistogramND (tagger, start_channel, stop_channels, binwidths, n_bins)

Parameters
* tagger (TimeTagger) — time tagger object
e start_channel (int) — channel on which start clicks are received

» stop_channels (1ist[int]) - channel list on which stop clicks are received defining the
time axes

e binwidths (1ist[int])— bin width in ps for the corresponding time axis

* n_bins (1ist[int])—the number of bins along the corresponding time axis

See all common methods

getData()

Returns a one-dimensional array of the size of the product of n_bins containing the histogram data. The
array order is in row-major. For example, with stop_channels=[chl, ch2] and n_bins=[2, 2], the
1D array would represent 2D bin indices in the order [(0,0), (0,1), (1,0), (1,1)], with (index
of chl, index of ch2). Please reshape the 1D array to get the N-dimensional array. The following code
demonstrates how to reshape the returned 1D array into multidimensional array using NumPy.

channels = [2, 3, 4, 5]

n_bins = [5, 3, 4, 6]

binwidths = [100, 100, 100, 50]

histogram_nd = HistogramND(tagger, 1, channels, binwidths, n_bins)
sleep(l) # Wait to accumulate the data

data = histogram_nd.getData()

multidim_array = numpy.reshape(data, n_bins)

Returns
Flattened array of histogram bins.

Return type
1D_array[int]

getIndex(dim)

Returns
Returns a vector of size n_bins[dim] containing the bin locations in ps for the corresponding
time axis.

Return type
1D_array[int]

90

Chapter 7. Application Programmer’s Interface

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Time Tagger User Manual, Release 1.2.3-local-build

Correlation
Correlation
© ch1
C
=) I
(7]
—_—

0 time
T
©
[m)
K]
(@)]

-100 -75 -50 -25 0 25 50 75 100 9getindex()

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 #bin

Accumulates time differences between clicks on two channels into a histogram, where all ticks are considered both as
“start” and “stop” clicks and both positive and negative time differences are considered.

class Correlation(tagger, channel_I, channel_2, binwidth, n_bins)

Parameters
* tagger (TimeTaggerBase) — time tagger object
e channel_1 (int) — channel on which (stop) clicks are received

* channel_2 (int) — channel on which reference clicks (start) are received (when left empty
or set to CHANNEL_UNUSED -> an auto-correlation measurement is performed, which is the
same as setting channel_I = channel_2)

* binwidth (int) — bin width in ps
* n_bins (int) — the number of bins in the resulting histogram
See all common methods

getData()

Returns
A one-dimensional array of size n_bins containing the histogram.

Return type
1D_array[int]

getDataNormalized ()

Return the data normalized as:

At
(2)(+) — - hi
g (1) binmwidih - N, N histogram(T)

where At is the capture duration, N7 and N, are number of events in each channel.

Returns
Data normalized by the binwidth and the average count rate.

7.5. Measurement Classes 91

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Time Tagger User Manual, Release 1.2.3-local-build

Return type
1D_array[float]

getIndex()

Returns
A vector of size n_bins containing the time bins in ps.

Return type
1D_array[int]

TimeDifferences

TimeDifferences

E nextstart click start click next startclick start click
(@)}
—_—> —_— — _—
T \ T \ T I\ T \ T
0 200 400 600 800 1000
time (ps)
T
o]
[a)
9]
(@)}
0 50 100 150 200 250 200 250 9etindex()
0 1 2 3 4 5 6 7 8 9 7 8 9 #bin
0 #histogram

A one-dimensional array of time-difference histograms with the option to include up to two additional channels that
control how to step through the indices of the histogram array. This is a very powerful and generic measurement.
You can use it to record consecutive cross-correlation, lifetime measurements, fluorescence lifetime imaging and many
more measurements based on pulsed excitation. Specifically, the measurement waits for a tag on the start_channel,
then measures the time difference between the start tag and all subsequent tags on the click_channel and stores them
in a histogram. If no start_channel is specified, the click_channel is used as start_channel corresponding to an auto-
correlation measurement. The histogram has a number n_bins of bins of bin width binwidth. Clicks that fall outside
the histogram range are discarded. Data accumulation is performed independently for all start tags. This type of
measurement is frequently referred to as ‘multiple start, multiple stop’ measurement and corresponds to a full auto- or
cross-correlation measurement.

The time-difference data can be accumulated into a single histogram or into multiple subsequent histograms. In this
way, you can record a sequence of time-difference histograms. To switch from one histogram to the next one you have
to specify a channel that provide switch markers (next_channel parameter). Also you need to specify the number of
histograms with the parameter n_histograms. After each tag on the next_channel, the histogram index is incremented by
one and reset to zero after reaching the last valid index. The measurement starts with the first tag on the next_channel.

You can also provide a synchronization marker that resets the histogram index by specifying a sync_channel. The
measurement starts when a tag on the sync_channel arrives with a subsequent tag on next_channel. When a rollover
occurs, the accumulation is stopped until the next sync and subsequent next signal. A sync signal before a rollover will
stop the accumulation, reset the histogram index and a subsequent signal on the next_channel starts the accumulation
again.

92 Chapter 7. Application Programmer’s Interface

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

Time Tagger User Manual, Release 1.2.3-local-build

Typically, you will run the measurement indefinitely until stopped by the user. However, it is also possible to specify
the maximum number of rollovers of the histogram index. In this case, the measurement stops when the number of
rollovers has reached the specified value.

class TimeDifferences(tagger, click_channel, start_channel=CHANNEL_UNUSED,
next_channel=CHANNEL_UNUSED, sync_channel=CHANNEL_UNUSED,
binwidth=1000, n_bins=1000, n_histograms=1)
Parameters
* tagger (TimeTaggerBase) — time tagger object instance

* click_channel (int) — channel on which stop clicks are received

e start_channel (int) — channel that sets start times relative to which clicks on the click
channel are measured

* next_channel (int) — channel that increments the histogram index

* sync_channel (int) - channel that resets the histogram index to zero
* binwidth (int) — binwidth in picoseconds

* n_bins (int) — number of bins in each histogram

* n_histograms (int) — number of histograms

Note: A rollover occurs on a next_channel event while the histogram index is already in the last histogram.
If sync_channel is defined, the measurement will pause at a rollover until a sync_channel event occurs and
continues at the next next_channel event. With undefined sync_channel, the measurement will continue without
interruption at histogram index 0.

See all common methods

getData()

Returns
A two-dimensional array of size n_bins by n_histograms containing the histograms.

Return type
2D_array[int]

getIndex()

Returns
A vector of size n_bins containing the time bins in ps.

Return type
1D_array[int]

setMaxCounts ()

Sets the number of rollovers at which the measurement stops integrating. To integrate infinitely, set the
value to 0, which is the default value.

getHistogramIndex()

Returns

The index of the currently processed histogram or the waiting state. Possible return values
are:

» -2: Waiting for an event on sync_channel (only if sync_channel is defined)

7.5. Measurement Classes 93

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Time Tagger User Manual, Release 1.2.3-local-build

* -]: Waiting for an event on next_channel (only if sync_channel is defined)

e 0 ... (n_histograms - 1): Index of the currently processed histogram

Return type
int

getCounts()
Returns
The number of rollovers (histogram index resets).

Return type
int

ready ()

Returns
True when the required number of rollovers set by setMaxCounts () has been reached.

Return type
bool

TimeDifferencesND

TimeDifferencesND

sync trigger #0 T T
Q o) Q (0]) (0] (0]
next trigger #0 - ;
sync trigger #1 A T :
next trigger #1 TO Tl
active histogram { | 0 f1 47 5 3 1 2
0 200 400 600 1000 time (us)

Timeline of active histograms

histogram index #1

start {

histogram index #0

This is an implementation of the TimeDifferences measurement class that extends histogram indexing into multiple
dimensions.

Please read the documentation of TimeDifferences first. It captures many multiple start - multiple stop histograms,
but with many asynchronous next_channel triggers. After each tag on each next_channel, the histogram index of the
associated dimension is incremented by one and reset to zero after reaching the last valid index. The elements of the

94 Chapter 7. Application Programmer’s Interface

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Time Tagger User Manual, Release 1.2.3-local-build

parameter n_histograms specify the number of histograms per dimension. The accumulation starts when next_channel
has been triggered on all dimensions.

You should provide a synchronization trigger by specifying a sync_channel per dimension. It will stop the accumulation
when an associated histogram index rollover occurs. A sync event will also stop the accumulation, reset the histogram
index of the associated dimension, and a subsequent event on the corresponding next_channel starts the accumulation
again. The synchronization is done asynchronous, so an event on the next_channel increases the histogram index even
if the accumulation is stopped. The accumulation starts when a tag on the sync_channel arrives with a subsequent tag
on next_channel for all dimensions.

Please use TimeTaggerBase.setInputDelay() to adjust the latency of all channels. In general, the order of the
provided triggers including maximum jitter should be:

old start trigger —> all sync triggers —> all next triggers —> new start trigger
class TimeDifferencesND (tagger, click_channel, start_channel, next_channels, sync_channels, n_histograms,
binwidth, n_bins)
Parameters
* tagger (TimeTaggerBase) — time tagger object instance
* click_channel (int) - channel on which stop clicks are received

e start_channel (int) — channel that sets start times relative to which clicks on the click
channel are measured

* next_channels (1ist[int]) — vector of channels that increments the histogram index
» sync_channels (1ist[int]) — vector of channels that resets the histogram index to zero
* n_histograms (int) — vector of numbers of histograms per dimension
* binwidth (int) — width of one histogram bin in ps
* n_bins (int) — number of bins in each histogram
See all common methods

See methods of TimeDifferences class.

7.5.5 Fluorescence-lifetime imaging (FLIM)
This section describes the FLIM related measurements classes of the Time Tagger API.
Flim

Changed in version 2.7.2.

Note: The Flim (beta) implementation is not final yet. It has a very advanced functionality, but details are subject
to change. Please give us feedback (support@swabianinstruments.com) when you encounter issues or when you have
ideas for additional functionality.

7.5. Measurement Classes 95

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
mailto:support@swabianinstruments.com

Time Tagger User Manual, Release 1.2.3-local-build

Flim
E next start click start click next start click start click
(@)}
_ _— —_— _—
T \ T \ T I\ T \
0 200 400 60 800 1000
time (ps)
=
©
[a)
9]
(@)}
0 50 100 150 200 250 0 50 100 150 200 250 9etindex()
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 #bin
0 1 #pixel

Fluorescence-lifetime imaging microscopy (FLIM) is an imaging technique for producing an image based on the dif-
ferences in the exponential decay rate of the fluorescence from a sample.

Fluorescence lifetimes can be determined in the time domain by using a pulsed source. When a population of Fluo-
rophores is excited by an ultrashort or delta-peak pulse of light, the time-resolved fluorescence will decay exponentially.

This measurement implements a line scan in a FLIM (Fluorescence-lifetime imaging microscopy) image that consists
of a sequence of pixels. This could either represent a single line of the image, or - if the image is represented as a single
meandering line - this could represent the entire image.

We provide two different classes that support FLIM measurements: F1im and F1imBase. F1im provides a versatile
high-level API. F1imBase instead provides the essential functionality with no overhead to perform Flim measurements.
FlimBase is based on a callback approach.

Please visit the Python example folder for a reference implementation.

Note: Up to version 2.7.0, the FLIM implementation was very limited and has been fully rewritten in version 2.7.2.
You can use the following 1 to 1 replacement to get the old FLIM behavior:

FLIM before version 2.7.0:
Flim(tagger, click_channel=1, start_channel=2, next_channel=3,
binwidth=100, n_bins=1000, n_pixels=320%240)

FLIM 2.7.0 replacement using TimeDifferences

TimeDifferences(tagger, click_channel=1, start_channel=2,
next_channel=3, sync_channel=CHANNEL_UNUSED,
binwidth=100, n_bins=1000, n_histograms=320%240)

class Flim(ragger, start_channel, click_channel, pixel_begin_channel, n_pixels, n_bins, binwidth[,
pixel_end_channel=CHANNEL_UNUSED, frame_begin_channel=CHANNEL_UNUSED,
finish_after_outputframe=0, n_frame_average=1, pre_initialize=True])

High-Level class for implementing FLIM measurements. The Flim class includes buffering of images and several
analysis methods.

The methods are split into different groups.

96 Chapter 7. Application Programmer’s Interface

Time Tagger User Manual, Release 1.2.3-local-build

The getCurrent. . . references the active frame.

The getReady. . . references the last full frame acquired.

The getSummed. . .

active frame via the optional parameter only_ready_frames.

operates on all frames which have been captured so far including or excluding the current

The get. . .Ex returns instead of an array, a FIimFrameInfo which contains more information than only the

raw array.

The class provides an frameReady () callback, which can be used to analyze the data when a frame is completed.

Parameters

tagger (TimeTaggerBase) — time tagger object instance

start_channel (int) — channel on which clicks are received for the time differences his-
togramming

click_channel (int) — channel on which start clicks are received for the time differences
histogramming

pixel_begin_channel (int) - start marker of a pixel (histogram)
n_pixels (int) — number of pixels (histograms) of one frame
n_bins (int) — number of histogram bins for each pixel

binwidth (int) — bin size in picoseconds

pixel_end_channel (int) — end marker of a pixel - incoming clicks on the click_channel
will be ignored afterward. (optional)

frame_begin_channel (int) — start the frame, or reset the pixel index. (optional)

finish_after_outputframe (int) — sets the number of frames stored within the mea-
surement class. After reaching the number, the measurement will stop. If the number is 0,
one frame is stored and the measurement runs continuously. (optional, default: 0)

n_frame_average (int) — average multiple input frames into one output frame, (optional,
default: 1)

pre_initialize (bool) — initializes the measurement on constructing. (optional)

See all common methods

getCurrentFrame ()

Returns

The histograms for all pixels of the currently active frame, 2D array with dimensions [n_bins,

n_pixels].

Return type

2D_array[int]

getCurrentFrameEx ()

Returns

The currently active frame.

Return type

FlimFramelnfo

7.5. Measurement Classes

97

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

Time Tagger User Manual, Release 1.2.3-local-build

getCurrentFrameIntensity ()

Returns
The intensities of all pixels of the currently active frame. The pixel intensity is defined by the
number of counts acquired within the pixel divided by the respective integration time.

Return type
1D_array[float]

getFramesAcquired()

Returns
The number of frames that have been completed so far, since the creation or last clear of the
object.

Return type
int

getIndex()

Returns
A vector of size n_bins containing the time bins in ps.

Return type
1D_array[int]

getReadyFrame ([index =-]])

Parameters
index (int) — Index of the frame to be obtained. If -1, the last frame which has been com-
pleted is returned. (optional)

Returns
The histograms for all pixels according to the frame index given. If the index is -1, it will
return the last frame, which has been completed. When stop_after_outputframe is 0, the
index value must be -1. If index >= stop_after_outputframe, it will throw an error.
2D array with dimensions [n_bins, n_pixels]

Return type
2D_array[int]

getReadyFrameEx ([index =-]])

Parameters
index (int) — Index of the frame to be obtained. If -1, the last frame which has been com-
pleted is returned. (optional)

Returns
The frame according to the index given. If the index is -1, it will return the last
completed frame. When stop_after_outputframe is 0, index must be -1. If index >=
stop_after_outputframe, it will throw an error.

Return type
FlimFramelnfo

getReadyFrameIntensity([index =-]])
Parameters

index (int) — Index of the frame to be obtained. If -1, the last frame which has been com-
pleted is returned. (optional)

98 Chapter 7. Application Programmer’s Interface

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Time Tagger User Manual, Release 1.2.3-local-build

Returns
The intensities according to the frame index given. If the index is -1, it will return the intensity
of the last frame, which has been completed. When stop_after_outputframe is 0, the index
value must be -1. If index >= stop_after_outputframe, it will throw an error. The
pixel intensity is defined by the number of counts acquired within the pixel divided by the
respective integration time.

Return type
1D_array[float]

getSummedFrames ([()nly_ready _frames=True, clear_summed=False])

Parameters

e only_ready_frames — If true, only the finished frames are added. On false, the currently
active frame is aggregated. (optional)

¢ clear_summed - If true, the summed frames memory will be cleared. (optional)

Returns
The histograms for all pixels. The counts within the histograms are integrated since the start
or the last clear of the measurement.

Return type
2D_array[int]

getSummedFramesEx ([only_ready _frames=True, clear_summed=False])

Parameters

* only_ready_frames (bool) — If true, only the finished frames are added. On false, the
currently active frame is aggregated. (optional)

e clear_summed (bool) — If True, the summed frames memory will be cleared. (optional)

Returns
A FlimFrameInfo that represents the sum of all acquired frames.

Return type
FlimFramelnfo

getSummedFramesIntensity([only_ready _frames=True, clear_summed=False])

Parameters

» only_ready_frames (bool) — If true, only the finished frames are added. On false, the
currently active frame is aggregated. (optional)

¢ clear_summed (bool) — If true, the summed frames memory will be cleared. (optional)

Returns
The intensities of all pixels summed over all acquired frames. The pixel intensity is the num-
ber of counts within the pixel divided by the integration time.

Return type
1D_array[float]

isAcquiring ()

Returns
A boolean which tells the user if the class is still acquiring data. It can only reach the false
state for stop_after_outputframe > 0. This should differ from isRunning() as once
rendering is done, it can’t be started again.

7.5.

Measurement Classes

99

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

Time Tagger User Manual, Release 1.2.3-local-build

Return type
bool

frameReady (frame_number, data, pixel_begin_times, pixel_end_times, frame_begin_time, frame_end_time)

Parameters
e frame_number (int) — current frame number

e data (ID_array[int]) — 1D array containing the raw histogram data, with the data of
pixel i and time bin j atindex i * n_bins + j

e pixel_begin_times (I1ist[int]) — start time for each pixel
e pixel_end_times (Iist[int]) - end time for each pixel

e frame_begin_time (int) — start time of the frame

e frame_end_time (int) — end time of the frame

The method is called when a frame is completed. Compared to on_frame_end(), it provides various
related data when invoked.

on_frame_end()

Virtual function which can be overwritten in C++. The method is called when a frame is completed.

FlimFramelnfo

This is a simple class that contains FLIM frame data and provides convenience accessor methods.

Note: Objects of this class are returned by the methods of the FLIM classes. Normally user will not construct
FlimFrameInfo objects themselves.

class FlimFrameInfo
pixels: int
number of pixels of the frame
bins: int
number of bins of each histogram
frame_number: int
current frame number
pixel_position: int
current pixel position
getFrameNumber ()
Returns

The frame number, starting from O for the very first frame acquired. If the index is -1, it is an
invalid frame which is returned on error.

Return type
int

100 Chapter 7. Application Programmer’s Interface

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Time Tagger User Manual, Release 1.2.3-local-build

isValid(O

Returns
A boolean which tells if this frame is valid or not. Invalid frames are possible on errors, such
as asking for the last completed frame when no frame has been completed so far.

Return type
bool

getPixelPosition()

Returns
A value which tells how many pixels were processed for this frame.

Return type
int

getHistograms ()

Returns
All histograms of the frame, 2D array with dimensions [n_bins, n_pixels].

Return type
2D_array[int]

getIntensities()

Returns
The summed counts of each histogram divided by the integration time.

Return type
1D_array[float]

getSummedCounts ()

Returns
The summed counts of each histogram.

Return type
1D_array[int]

getPixelBegins ()

Returns
An array of the start timestamps of each pixel.

Return type
1D_array[int]

getPixelEnds()

Returns
An array of the end timestamps of each pixel.

Return type
1D_array[int]

7.5.

Measurement Classes 101

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Time Tagger User Manual, Release 1.2.3-local-build

FlimBase

The F1imBase provides only the most essential functionality for FLIM tasks. The benefit from the reduced functionality
is that it is very memory and CPU efficient. The class provides the frameReady () callback, which must be used to
analyze the data.

class FlimBase(tagger, start_channel, click_channel, pixel_begin_channel, n_pixels, n_bins, binwidth[,

pixel_end_channel=CHANNEL_UNUSED, frame_begin_channel=CHANNEL_UNUSED,
finish_after_outputframe=0, n_frame_average=1, pre_initialize=True])
Parameters
* tagger (TimeTaggerBase) — time tagger object instance

e start_channel (int) — channel on which clicks are received for the time differences his-
togramming

e click_channel (int) — channel on which start clicks are received for the time differences
histogramming

* pixel_begin_channel (int) — start marker of a pixel (histogram)
* n_pixels (int) — number of pixels (histograms) of one frame

* n_bins (int) — number of histogram bins for each pixel

* binwidth (int) - bin size in picoseconds

» pixel_end_channel (int) - end marker of a pixel - incoming clicks on the click_channel
will be ignored afterward. (optional, default: CHANNEL_UNUSED)

» frame_begin_channel (int) — start the frame, or reset the pixel index. (optional, default:
CHANNEL_UNUSED)

o finish_after_outputframe (int) — sets the number of frames stored within the mea-
surement class. After reaching the number, the measurement will stop. If the number is 0,
one frame is stored and the measurement runs continuously. (optional, default: 0)

* n_frame_average (int) — average multiple input frames into one output frame. (optional,
default: 1)

» pre_initialize (bool) — initializes the measurement on constructing. (optional, default:
True)

See all common methods
isAcquiring()

Returns
A boolean which tells the user if the class is still acquiring data. It can only reach the false
state for stop_after_outputframe > 0. This should differ from isRunning() as once
rendering is done, it can’t be started again.

Return type
bool

frameReady (frame_number, data, pixel_begin_times, pixel_end_times, frame_begin_time, frame_end_time)

Parameters
e frame_number (int) — current Frame number

e data (ID_array[int]) — 1D array containing the raw histogram data, with the data of
pixel i and time bin j atindex i * n_bins + j

102

Chapter 7. Application Programmer’s Interface

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Time Tagger User Manual, Release 1.2.3-local-build

* pixel_begin_times (1ist[int]) — start time for each pixel
e pixel_end_times (I1ist[int]) - end time for each pixel

o frame_begin_time (int) — start time of the frame

e frame_end_time (int) — end time of the frame

The method is called when a frame is completed. Compared to on_frame_end(), it provides various
related data when invoked.

on_frame_end()
Virtual function which can be overwritten in C++. The method is called when a frame is completed.

7.5.6 Frequency analysis

FrequencyStability

FrequencyStability(tagger, channel=1, steps=[1, 3, ...], average=4)

e [T T ITITTTIIOOT

Internally | 0 1 2 3 4 5 6 7 8 9
averaged
(1) _._> 1 _..> —>) —s (D) s
ADEV for | O R v Lo £
ADEV for '
step size n=3
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time (us)
Step size n
10° 10! 102 103 10* 10° 106 107
-...i " a1 3 1l " " " 1aal " e | " e | " P | " P | " PR |
10-5 4 Q\ ADEV,, = /f,> (E/™)2 with E™ = t; = 2t; 4 p + ti1 2n
] i

log-log slope 1:
Frequency drift

Allan Deviation

10-° E \
log-log slope -1: ™. .
Phase noise, esp. log-log slope 0:
10-7 4 discretization noise Flicker period noise
10-6 1075 1074 1073 1072 1071 100
T (S)

Frequency Stability Analysis is used to characterize periodic signals and to identify sources of deviations from the
perfect periodicity. It can be employed to evaluate the frequency stability of oscillators, for example. A set of established
metrics provides insights into the oscillator characteristics on different time scales. The most prominent metric is the
Allan Deviation (ADEV). The FrequencyStability class executes the calculation of often used metrics in parallel
and conforms to the IEEE 1139 standard. For more information, we recommend the Handbook of Frequency Stability
Analysis.

7.5. Measurement Classes 103

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://www.nist.gov/publications/handbook-frequency-stability-analysis
https://www.nist.gov/publications/handbook-frequency-stability-analysis

Time Tagger User Manual, Release 1.2.3-local-build

/ 2
The calculated deviations are the root-mean-square 4/ f, >, (Ez(n)) of a specific set of error samples E(™) with a

normalization factor f,,. The step size n together with the oscillator period T" defines the time span 7,, = nT that is
investigated by the sample. The error samples F(") are calculated from the phase samples ¢ that are generated by the
FrequencyStability class by averaging over the timestamps of a configurable number of time-tags. To investigate
the averaged phase samples directly, a trace of configurable length is stored to display the current evolution of frequency
and phase errors.

Each of the available deviations has its specific sample £(™). For example, the Allan Deviation investigates the second

derivative of the phase ¢ using the sample Ef”) =t; — 2t;1pn + tiyon. The full formula of the Allan deviation for a set
of N averaged timestamps is

N—-2n
1

ADEV(’Tn) = m Z (tz — 2ti+n + ti+2n)2~
nog=1

The deviations can be displayed in the Allan domain or in the time domain. For the time domain, the Allan domain data
is multiplied by a factor proportional to 7. This means that in a log-log plot, all slopes of the time domain curves are
increased by +1 compared to the Allan ones. The factor \/3 for ADEV/MDEY and /10 /3 for HDEYV, respectively, is
used so that the scaled deviations of a white phase noise distortion correspond to the standard deviation of the averaged
timestamps ¢. In some cases, there are different established names for the representations. The FrequencyStability
class provides numerous metrics for both domains:

Allan domain Time domain

Standard Deviation (STDD)
Allan Deviation (ADEV) ADEVScaled = % ADEV
Modified Allan Deviation (MDEV) | Time Deviation TDEV = % MDEV
Hadamard Deviation (HDEV) HDEVScaled = 170/3 HDEV

class FrequencyStability(tagger, channel, steps, average, trace_len)

Parameters
* channel (int) — The input channel number.

» steps (list[int])— The step sizes to consider in the calculation. The length of the list de-
termines the maximum number of data points. Because the oscillator frequency is unknown,
it is not possible to define 7 directly.

* average (int)— The number of time-tags to average internally. This downsampling allows
for a reduction of noise and memory requirements. Default is 1000.

* trace_len (int)—Number of data points in the phase and frequency error traces, calculated
from averaged data. The trace always contains the latest data. Default is 1000.

Note: Use average and TimeTagger.setEventDivider () with care: The event divider can be used to save
USB bandwidth. If possible, transfer more data via USB and use average to improve your results.

getDataObject()

Returns
An object that allows access to the current metrics

104 Chapter 7. Application Programmer’s Interface

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Time Tagger User Manual, Release 1.2.3-local-build

Return type
FrequencyStabilityData

class FrequencyStabilityData

getTau()

The 7 axis for all deviations. This is the product of the steps parameter of the FrequencyStability
measurement and the measured average period of the signal.

Returns
The 7 values.

Return type
1D_array[float]

getADEV()

The overlapping Allan deviation, the most common analysis framework. In a log-log plot, the slope allows
one to identify the type of noise:

» -1: white or flicker phase noise like discretization or analog noisy delay
* -0.5: white period noise

* 0: flicker period noise like electric noisy oscillator

* 0.5: integrated white period noise (random walk period)

¢ 1: frequency drift, e.g., induced thermally

Sample
Ei(n) =t; — 2ti4n + liton

Domain
Allan domain

Returns
The overlapping Allan Deviation.

Return type
1D_array[float]

getMDEV()

Modified overlapping Allan deviation. It averages the second derivate before calculating the RMS. This
splits the slope of white and flicker phase noise:

* -1.5: white phase noise, like discretization
 -1.0: flicker phase noise, like an electric noisy delay
The metric is more commonly used in the time domain, see get TDEV ().
Sample
EM = 1 E?;ol (tivs — 2t jan +tivjran)

Domain
Allan domain

Returns
The overlapping Modified Allan Deviation.

Return type
1D_array[float]

7.5. Measurement Classes 105

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Time Tagger User Manual, Release 1.2.3-local-build

getHDEV()

The overlapping Hadamard deviation uses the third derivate of the phase. This cancels the effect of a
constant phase drift and converges for more divergent noise sources at higher slopes:

* 1: integrated flicker period noise (flicker walk period)
* 1.5: double integrated white period noise (random run period)
It is scaled to match the ADEV for white period noise.

Sample
EZ-(H) =t; — 3liyn + 3tivon — tiz3n

Domain
Allan domain

Returns
The overlapping Hadamard Deviation.

Return type
1D_array[float]

getSTDD()

Caution: The standard deviation is not recommended as a measure of frequency stability because it
is non-convergent for some types of noise commonly found in frequency sources, most noticeable the
frequency drift.

Standard deviation of the periods.

Sample

EZ,(") =1; — ti-i—n — meanyg (tk - tk+n)
Domain

Time domain

Returns
The standard deviation.

Return type
1D_array([float]

getADEVScaled()
Domain
Time domain

Returns
The scaled version of the overlapping Allan Deviation, equivalent to getADEV() * getTau()

/3.
Return type
1D_array[float]
getTDEV()

The Time Deviation (TDEV) is the common representation of the Modified overlapping Allan deviation
getMDEV (). Taking the log-log slope +1 and the splitting of the slope of white and flicker phase noise into
account, it allows an easy identification of the two contributions:

 -0.5: white phase noise, like discretization

106 Chapter 7. Application Programmer’s Interface

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Time Tagger User Manual, Release 1.2.3-local-build

* 0: flicker phase noise, like an electric noisy delay
Domain
Time domain

Returns
The overlapping Time Deviation, equivalent to getMDEV() * getTau() / v/3.

Return type
1D_array[float]

getHDEVScaled()

Caution: While HDEV is scaled to match ADEV for white period noise, this function is scaled to
match the TDEV for white phase noise. The difference of period vs phase matching is roughly 5% and
easy to overlook.

Domain
Time domain

Returns
The scaled version of the overlapping Hadamard Deviation, equivalent to getHDEV() *

getTau() /+/10/3.

Return type
1D_array[float]

getTraceIndex()
The time axis for getTracePhase () and getTraceFrequency().

Returns
The time index in seconds of the phase and frequency error trace.

Return type
1D_array[float]
getTracePhase()

Provides the time offset of the averaged timestamps from a linear fit over the last trace_len averaged times-
tamps.

Returns
A trace of the last trace_len phase samples in seconds.

Return type
1D_array([float]

getTraceFrequency()

Provides the frequency offset from the average frequency during the last trace_len + 1 averaged timestamps.

Returns
A trace of the last trace_len normalized frequency error data points in ppl.

Return type
1D_array([float]

7.5.

Measurement Classes 107

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Time Tagger User Manual, Release 1.2.3-local-build

7.5.7 Time-tag-streaming

Measurement classes described in this section provide direct access to the time tag stream with minimal or no pre-
processing.

Time tag format

The time tag contain essential information about the detected event and have the following format:

Size Type Description

8 bit enum TagType overflow type

8 bit - reserved

16 bit uint16 number of missed events

32 bit int32 channel number

64 bit int64 time in ps from device start-up

TimeTagStream

Allows user to access a copy of the time tag stream. It allocates a memory buffer of the size max_tags which is filled
with the incoming time tags that arrive from the specified channels. User shall call getData () method periodically
to obtain the current buffer containing timetags collected. This action will return the current buffer object and create
another empty buffer to be filled until the next call to getData().

class TimeTagStream(ragger, n_max_events, channels)

Parameters
* tagger (TimeTaggerBase) — time tagger object instance
* n_max_events (int) — buffer size for storing time tags
» channels (1ist[int])— non-empty list of channels to be captured.
See all common methods

getData()

Returns a TimeTagStreamBuffer object and clears the internal buffer of the TimeTagStream measure-
ment. Clearing the internal buffer on each call to getData() guarantees that consecutive calls to this
method will return every time-tag only once. Data loss may occur if getData() is not called frequently
enough with respect to n_max_events.

Returns
buffer object containing timetags collected.

Return type
TimeTagStreamBuffer

class TimeTagStreamBuffer
size: int

Number of events stored in the buffer. If the size equals the maximum size of the buffer set in
TimeTagStream via n_max_events, events have likely been discarded.

hasOverflows: bool

Returns True if a stream overflow was detected in any of the tags received. Note: this is independent of an
overflow of the internal buffer of TimeTagStream.

108 Chapter 7. Application Programmer’s Interface

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Time Tagger User Manual, Release 1.2.3-local-build

tStart: int

Return the data-stream time position when the TimeTagStream or Fileliriter started data acquisition.

tGetData: int
Return the data-stream time position of the call to .getData() method that created this object.

getTimestamps ()
Returns an array of timestamps.

Returns
Event timestamps in picoseconds for all chosen channels.

Return type
list[int]
getChannels()
Returns an array of channel numbers for every timestamp.

Returns
Channel number for each detected event.

Return type
list[int]

getOverflows ()
Deprecated since version 2.5.0: please use getEventTypes () instead.

getEventTypes()

Returns an array of event type for every timestamp. See, Time tag format. The method returns plain
integers, but you can use TagType to compare the values.

Returns
Event type value for each detected event.

Return type
1D_array[int]

getMissedEvents()

Returns an array of missed event counts during an stream overflow situation.

Returns
Missed events value for each detected event.

Return type
1D_array[int]

FileWriter

Writes the time-tag-stream into a file in a structured binary format with a lossless compression. The estimated file
size requirements are 2-4 Bytes per time tag, not including the container the data is stored in. The continuous back-
ground data rate for the container can be modified via TimeTagger. setStreamBlockSize (). Data is processed in
blocks and each block header has a size of 160 Bytes. The default processing latency is 20 ms, which means that a
block is written every 20 ms resulting in a background data rate of 8 kB/s. By increasing the processing latency via
setStreamBlockSize (max_events=524288, max_latency=1000) to 1 s, the resulting data rate for the container
is reduced to one 160 B/s. The files created with Fileliriter measurement can be read using FileReader or loaded
into the Virtual Time Tagger.

7.5. Measurement Classes 109

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Time Tagger User Manual, Release 1.2.3-local-build

Note: You can use the Dump for dumping into a simple uncompressed binary format. However, you will not be able
to use this file with Virtual Time Tagger or FileReader.

The Fileliriter is able to split the data into multiple files seamlessly when the file size reaches a maximal size. For
the file splitting to work properly, the filename specified by the user will be extended with a suffix containing sequential
counter, so the filenames will look like in the following example

fw =

#
#
#
#
#
#

FileWriter(tagger, 'filename.ttbin', [1,2,3]) # Store tags from channels 1,2,3

When splitting occurs the files with following names will be created

filename. ttbin # the sequence header file with no data blocks
filename.1.ttbin # the first file with data blocks
filename.2.ttbin

filename. 3.ttbin

In addition, the Fileliriter will query and store the configuration of the Time Tagger in the same format as returned
by the TimeTaggerBase.getConfiguration() method. The configuration is always written into every file.

See also: FileReader, The TimeTaggerVirtual class, and mergeStreamFiles().

class FileWriter (tagger, filename, channels)

Parameters
* tagger (TimeTaggerBase) — time tagger object
» filename (str) — name of the file to store to
* channels (Iist[int]) — non-empty list of real or virtual channels

Class constructor. As with all other measurements, the data recording starts immediately after the class instan-
tiation.

Note: Compared to the Dump measurement, the Fileliriter requires explicit specification of the channels. If
you want to store timetags from all input channels, you can query the list of all input channels with TimeTagger .
getChannellList().

See all common methods

split([new_ﬁlename= "])

Close the current file and create a new one. If the new_filename is provided, the data writing will continue
into the file with the new filename and the sequence counter will be reset to zero.

You can force the file splitting when you call this method without parameter or when the new_filename is
an empty string.

Parameters
new_filename (str) — filename of the new file.

setMaxFileSize (max_file_size)

Set the maximum file size on disk. When this size is exceeded a new file will be automatically created to
continue recording. The actual file size might be larger by one block. (default: ~1 GByte)

getMaxFileSize()

110

Chapter 7. Application Programmer’s Interface

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Time Tagger User Manual, Release 1.2.3-local-build

Returns
The maximal file size. See also FilelWriter.setMaxFileSize().

Return type
int

getTotalEvents()

Returns
The total number of events written into the file(s).

Return type
int

getTotalSize()

Returns
The total number of bytes written into the file(s).

Return type
int

FileReader

This class allows you to read data files store with FileReader. The FileReader reads a data block of the specified
size into a TimeTagStreamBuffer object and returns this object. The returned data object is exactly the same as
returned by the TimeTagStream measurement and allows you to create a custom data processing algorithms that will
work both, for reading from a file and for the on-the-fly processing.

The FileReader will automatically recognize if the files were split and read them too one by one.

Example:

Lets assume we have following files created with the FilelWriter
measurement.ttbin # sequence header file with no data blocks
measurement.l.ttbin # the first file with data blocks

measurement.2.ttbin

measurement.3.ttbin

measurement.4.ttbin

another_meas.ttbin

another_meas.1.ttbin

Read all files in the sequence 'measurement’
fr = FileReader("'measurement.ttbhin™)

Read only the first data file
fr = FileReader("'measurement.1.ttbin")

Read only the first two files
fr = FileReader(['"measurement.l.ttbin", "measurement.2.ttbin"])

Read the sequence 'measurement' and then the sequence 'another_meas'
fr = FileReader(["measurement.ttbin", "another_meas.ttbin"])

See also: FileWriter, The TimeTaggerVirtual class, and mergeStreamFiles().

7.5. Measurement Classes 111

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Time Tagger User Manual, Release 1.2.3-local-build

class FileReader (filenames)
This is the class constructor. The FileReader automatically continues to read files that were split by the
Fileliriter.

Parameters
filenames (1ist[str]) — filename(s) of the files to read.
getData(size_t n_events)

Reads the next n_events and returns the buffer object with the specified number of timetags. The FileReader
stores the current location in the data file and guarantees that every timetag is returned once. If less than
n_elements are returned, the reader has reached the end of the last file in the file-list filenames. To check if
more data is available for reading, it is more convenient to use hasData ().

Parameters
n_events (int) — Number of timetags to read from the file.

Returns
A buffer of size n_events.

Return type
TimeTagStreamBuffer

hasData()

Returns
True if more data is available for reading, False if all data has been read from all the files
specified in the class constructor.

Return type
bool

getConfiguration()

Returns
A JSON formatted string (dictionary in Python) that contains the Time Tagger configuration
at the time of file creation.

Return type
str or dict

Dump

Deprecated since version 2.6.0: please use Fileliriter instead.

Warning: The files created with this class are not readable by TimeTaggerVirtual and FileReader.

Writes the timetag stream into a file in a simple uncompressed binary format that store timetags as 128bit records, see
Time tag format.

Please visit the programming examples provided in the installation folder of how to dump and load data.

class Dump (tagger, filename, max_tags, channels)
Parameters
* tagger (TimeTaggerBase) — time tagger object instance

» filename (str)—name of the file to dump to

112 Chapter 7. Application Programmer’s Interface

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

Time Tagger User Manual, Release 1.2.3-local-build

* max_tags (int) — stop after this number of tags has been dumped. Negative values will
dump forever

* channels (1ist[int]) - list of real or virtual channels which are dumped to the file (wWhen
empty or not passed all active channels are dumped)

clear()
Delete current data in the file and restart data storage.

stopQ)
Stops data recording and closes data file.

Scope

trigger 1 | window_size
L * T T T 5 *
rising edge A 1 : !
L :
L * 4 4
falling edge - [1
| :
trace | |
0 10 20 30 40 50 60 70 80

Time (ns)

The Scope class allows to visualize time tags for rising and falling edges in a time trace diagram similarly to an ultrafast
logic analyzer. The trace recording is synchronized to a trigger signal which can be any physical or virtual channel.
However, only physical channels can be specified to the event_channels parameter. Additionally, one has to specify
the time window_size which is the timetrace duration to be recorded, the number of traces to be recorded and the
maximum number of events to be detected. If n_traces < 1 then retriggering will occur infinitely, which is similar
to the “normal” mode of an oscilloscope.

Note: Scope class implicitly enables the detection of positive and negative edges for every physical channel specified
in event_channels. This accordingly doubles the data rate requirement per input.

class Scope(tagger, event_channels=[], trigger_channel, window_size, n_traces, n_max_events)

Parameters
* tagger (TimeTagger) — TimeTagger object
e event_channels (I1ist[int]) — List of channels
* trigger_channel (int)— Channel number of the trigger signal
» window_size (int) — Time window in picoseconds
* n_traces (int) — Number of trigger events to be detected

e n_max_events (int) — Max number of events to be detected

7.5. Measurement Classes 113

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Time Tagger User Manual, Release 1.2.3-local-build

See all common methods
getData()
Returns a tuple of the size equal to the number of event_channels, where each element is a tuple of Event.

Returns
Event list for each channel.

Return type
tuple[tuple[Event]]

class Event

Pair of the timestamp and the new state.

time
Type
int
state
Type
State

class State

Current input state. Can be unknown because no edge has been detected on the given channel after initialization
or an overflow.

UNKNOWN
HIGH
LOW
Sampler
® ® ® [] ®
trigger A in overflow
channel[0] 1
channel[1] 1
getbData | [[11,0, 2], [24,0,0], 1[36,0,1], not captured [71,1,2] 1
getDataAsMask [[11, Ob1...00], [24, 0b0OO], [36, 0b10], in overflow [71, 0b1...01]]
0 10 20 30 40 50 60 70 80
Time (ns)

The Sampler class allows sampling the state of a set of channels via a trigger channel.

For every event on the trigger input, the current state (low: 0, high: 1, unknown: 2) will be written to an internal buffer.
Fetching the data of the internal buffer will clear its internal buffer, so every event will be returned only once.

114 Chapter 7. Application Programmer’s Interface

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

Time Tagger User Manual, Release 1.2.3-local-build

Time Tagger detects pulse edges and therefore a channel will be in the unknown state until an edge detection event was
received on that channel from the start of the measurement or after an overflow. The internal processing assumes that
no event could be received within the channel’s deadtime otherwise invalid data will be reported until the next event
on this input channel.

The maximum number of channels is limited to 63 for one Sampler instance.

class Sampler (tagger, trigger, channels, max_trigger)

Parameters
* tagger (TimeTagger) — TimeTagger object
* trigger (int) — Channel number of the trigger signal
» channels (Iist[int]) — List of channels to be sampled

» max_trigger (int) — The number of triggers and their respective sampled data, which is
stored within the measurement class.

See all common methods

getData()
Returns and removes the stored data as a 2D array (n_triggers x (1+n_channels)):
[
[timestamp of first trigger, state of channel 0, state of channel 1, ...],
[timestamp of second trigger, state of channel 0, state of channel 1, ...],
]

Where state means:

0: low
1: high
2: undefined (after overflow)

Returns
sampled data

Return type
2D_array[int]

getDataAsMask()

Returns and removes the stored data as a 2D array (n_triggers x 2):

[

[timestamp of first trigger, (state of channel 0) << 0 | (state of channel.
1) << 1 | ... | any_undefined << 63],

[timestamp of second trigger, (state of channel 0) << 0O | (state of channel.
1) << 1 | ... | any_undefined << 63],

]

Where state means:

0: low or undefined (after overflow)
1: high

7.5. Measurement Classes 115

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Time Tagger User Manual, Release 1.2.3-local-build

If the highest bit (data[63]) is marked, one of the channels has been in an undefined state.

Returns
sampled data

Return type
2D_array[int]

7.5.8 Helper classes

SynchronizedMeasurements

The SynchronizedMeasurements class allows for synchronizing multiple measurement classes in a way that ensures all
these measurements to start, stop simultaneously and operate on exactly the same time tags. You can pass a Time Tagger
proxy-object returned by SynchronizedMeasurements.getTagger () to every measurement you create. This will
simultaneously disable their autostart and register for synchronization.

class SynchronizedMeasurements (tagger)

Parameters
tagger (TimeTaggerBase) — TimeTagger object

registerMeasurement (measurement)

Registers the measurement object into a pool of the synchronized measurements.

Note: Registration of the measurement classes with this method does not synchronize them.
In order to start/stop/clear these measurements synchronously, call these functions on the
SynchronizedMeasurements object after registering the measurement objects, which should be
synchronized.

Parameters
measurement — Any measurement (IteratorBase) object.

unregisterMeasurement (imeasurement)

Unregisters the measurement object out of the pool of the synchronized measurements.

Note: This method does nothing if the provided measurement is not currently registered.

Parameters
measurement — Any measurement (IteratorBase) object.

start()
Calls start () for every registered measurement in a synchronized way.

startFor (dumtion[, clear=True])
Calls startFor () for every registered measurement in a synchronized way.

stopQ)
Calls stop () for every registered measurement in a synchronized way.

clear()

Calls clear () for every registered measurement in a synchronized way.

116 Chapter 7. Application Programmer’s Interface

https://docs.python.org/3/library/functions.html#int

Time Tagger User Manual, Release 1.2.3-local-build

isRunning ()
Calls isRunning () for every registered measurement and returns true if any measurement is running.

getTagger()

Returns a proxy tagger object which can be passed to the constructor of a measurement class to register the
measurements at initialization to the synchronized measurement object. Those measurements will not start
automatically.

Note: The proxy tagger object returned by getTagger () is not identical with the TimeTagger object
created by createTimeTagger (). You can create synchronized measurements with the proxy object the
following way:

tagger = TimeTagger.createTimeTagger ()

syncMeas = TimeTagger.SynchronizedMeasurements(tagger)
taggerSync = syncMeas.getTagger()

counter = TimeTagger.Counter(taggerSync, [1, 2])
countrate = TimeTagger.Countrate(taggerSync, [3, 4])

Passing tagger as a constructor parameter would lead to the not synchronized behavior.

7.5.9 Custom Measurements

The class CustomlMeasurement allows you to access the raw time tag stream with very little overhead. By
inheriting from CustomMeasurement, you can implement your fully customized measurement class. The
CustomMeasurement . process () method of this class will be invoked as soon as new data is available.

Note: This functionality is only available for C++, C# and Python. You can find examples of how to use the
CustomMeasurement in your examples folder.

class CustomMeasurement (tagger)

Parameters
tagger (TimeTaggerBase) — TimeTagger object

The constructor of the CustomMeasurement class itself takes only the parameter tagger. When you sub-class
your own measurement, you can add to your constructor any parameters that are necessary for your measurement.
You can find detailed examples in your example folder.

See all common methods

process (incoming_tags, begin_time, end_time)

Parameters

¢ incoming_tags — Tag[][struct{type, missed_events, channel, time}], the chunk of time-
tags to be processed in this call of process (). This is an external reference that is shared
with other measurements and might be overwritten for the next call. So if you need to store
tags, create a copy.

* begin_time (int) — The begin time of the data chunk.

¢ end_time (int) — The end time of the data chunk

7.5. Measurement Classes 117

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Time Tagger User Manual, Release 1.2.3-local-build

Override the process () method to include your data processing. The method will be called by the Time
Tagger backend when a new chunk of time-tags is available. You are free to execute any code you like,
but be aware that this is the critical part when it comes to performance. In Python, it is advisable to use
numpy . array () for calculation or even pre-compiled code with Numba if an explicit iteration of the tags is
necessary. Check the examples in your examples folder carefully on how to design the process () method.

Note: In Python, the incoming_tags are a structured Numpy array. You can access single tags as well as
arrays of tag entries directly:

first_tag = incoming_tags[0]
all_timestamps = incoming_tags['time']

mutex

Context manager object (see Context Manager Types) that locks the mutex when used and automatically
unlocks it when the code block exits. For example, it is intended for use with Python’s “with” keyword as

class MyMeasurement (CustomMeasurement) :

def getData(self):
Acquire a lock for this instance to guarantee that
self.data is not modified in other parallel threads.
This ensures to return a consistent data.
with self.mutex:
return self.data.copy(Q)

118

Chapter 7. Application Programmer’s Interface

https://numpy.org/doc/stable/reference/generated/numpy.array.html#numpy.array
https://numba.pydata.org/
https://numpy.org/doc/stable/user/basics.rec.html#structured-arrays
https://docs.python.org/3/library/stdtypes.html#typecontextmanager
https://docs.python.org/3/reference/compound_stmts.html#with

CHAPTER
EIGHT

IN DEPTH GUIDES

This section contains articles that provide in depth details on the Time Tagger hardware and software.

8.1 Conditional Filter

The Conditional Filter is a hardware feature that allows you to remove irrelevant time tags carrying no information. In
a typical use case, you have a high-frequency signal applied to at least one channel. Examples include fluorescence
lifetime measurements or optical quantum information and cryptography where you want to capture synchronization
clicks from a high repetition rate excitation laser.

The Conditional Filter distinguishes between trigger channels and filtered channels. All input channels of your Time
Tagger are fully equivalent and can be used as both, trigger or filtered channels. The data rate of the filtered channels
will be reduced. The reduction is controlled by the trigger channels: Every trigger opens the gate for exactly one event
per filtered channel. All other events in the filtered channels will be discarded on the Time Tagger and do not need to
be transferred via the USB connection.

Being a hardware feature, the Conditional Filter is not controlled on the level of individual measurements. It is enabled
on the level of your physical device with a typical Python code looking like

import TimeTagger
tagger = TimeTagger.createTimeTagger ()
tagger.setConditionalFilter(trigger=[1], filtered=[8])

The details will be explained in the Setup of the Conditional Filter section.

8.1.1 Example configurations

One trigger and one filtered channel

The most fundamental case involves one filtered-channel and one trigger-channel:

tagger.setConditionalFilter(trigger=[1], filtered=[8])

The Conditional Filter discards by default all signals of the filtered-channel. Only the very next event is transmitted
after an event on the trigger-channel. In the example, click 2 opens the gate for click 3. When click 3 passes, it closes
the gate and the subsequent events will be discarded until another event (click 8) occurs in the trigger channel.

119

Time Tagger User Manual, Release 1.2.3-local-build

Trigger #1 A T\Z Tg

I
Filtered #8 - :
1

H

-
/

o

0 10 20 30 40 50 60 70 80
Time (ns)

Multiple trigger-channels

There is the option to define more than one trigger-channel for the Conditional Filter. As a consequence, the next event
on the filtered-channel is transmitted when there was a event at any of the trigger-channels:

tagger.setConditionalFilter(trigger=[1, 2], filtered=[8])

Trigger #1 - IZ T9
AN

Trigger #2 - T6

I 3 4 s \ 7 I \ 10
Filtered #8 : : : :

1 1 1 1

0 10 20 30 40 50 60 70 80
Time (ns)

This is the typical use case when you detect photons with multiple detectors and want to correlate both with the common
excitation laser.

Multiple filtered channels

It is also possible to use the Conditional Filter with one trigger-channel and several filtered-channels:

tagger.setConditionalFilter(trigger=[1], filtered=[7, 8])

Trigger #1 1 IB T{l
Filtered #7 - EZ \ \TG 58 \N

1 1 1 1 1 \
Filtered #81 ! * \‘T“ 1> 17 19 110 TB
1 1 1 1 1
0 10 20 30 40 50 60 70 80
Time (ns)

120 Chapter 8. In Depth Guides

Time Tagger User Manual, Release 1.2.3-local-build

Multiple trigger and filtered channels

In general, you can also combine multiple trigger-channels and multiple filtered-channels:

tagger.setConditionalFilter(trigger=[1, 2], filtered=[7, 8])

Trigger #1 I3 I\lZ
Trigger #2 A \ \ TS\ \\

12
Filtered #7 :
1

Y
=

Filtered #8 A

=T
——— N

EN
s
--=7
——®

=

o
=T

=
——®

=

N

Time (ns)

This scheme shows two different high-frequency signals on channels #7 and #8. Such cases can occur when you want
to run two completely independent experiments on a single Time Tagger. For instance, channels #1/#7 and #2/#8 may
represent the two experiments. It is not possible to set up two independent Conditional Filters for these groups. The
scheme shown is the only way to apply the Conditional Filter in this case - with the drawback that channel #1 (#2) may
also trigger channel #8 (#7), making the filtering less efficient.

8.1.2 Understanding the filtering mechanism

The Conditional Filter is a hardware feature that is embedded in a sequence of processing stages. It is important to
understand the order of these stages. Some unexpected results can occur when you are not aware of these mechanisms,
so read the following section with care.

Terms

Input time stamp
This is the time stamp you are interested in: It refers to the time when the input signal transits the trigger level at
the input connector.

TDC time stamp
This is the time stamp the Time Tagger is interested in: It is the raw 64 bit integer the FPGA attributes to a pulse
edge.

Hardware delay

The signal entering the input connector is routed through the Time Tagger into the FPGA where the time to digital
conversion is performed. This route differs from channel to channel and so does the accumulated delay. Because
of this, we need to distinguish between Input time stamp and TDC time stamp. The hardware delay cannot be
controlled by the user, it is defined by the design of the Time Tagger hardware and the FPGA configuration (this
can vary from software release to software release). But don’t worry, the Time Tagger is calibrated to compensate
for this delay. This compensation is done on the device in case of the Time Tagger Ultra and the Time Tagger
X. The Time Tagger 20 can only apply the delay in software (see details below). Except for the purpose of
understanding the Conditional Filter, you do not need to care about the difference.

8.1. Conditional Filter 121

Time Tagger User Manual, Release 1.2.3-local-build

External delay
Any delay introduced before the Time Tagger, e.g. by cable lengths or optical pathways.

Processing stages

1. Pulse enters the Time Tagger: Up to the input connector, the user is in charge of the external delays. They can
be controlled by changing cable lengths or optical pathways. The time tag generated by the Time Tagger should
therefore represent the temporal order at the input connectors. This is the input time stamp.

2. Time to digital conversion: The pulses propagate through the Time Tagger. They are compared to the trigger
level of the input stage. This results in a high or low logic level. This is still analog information that propagates
to the FPGA. Here, the TDC time stamp is attributed to the pulse edge. The propagation length up to this time
to digital conversion (TDC) differs from channel to channel. It can be compensated in one of the later stages.

3. Adjustable hardware delay (TT Ultra and TTX only!): From software version 2.8.0 on, the Time Tagger Ultra
is able to buffer and reorder the tags before the Conditional Filter. For Time Tagger X, this feature is available
from software version 2.12.0 on. You can set an individual delay for every input stage by TimeTaggerBase.
setDelayHardware (). This behaves like an adjustable hardware delay and is calibrated by default to compen-
sate for the physical hardware delay. It changes the behavior of the Conditional Filter tremendously, as you will
see in the next stages.

4. Conditional Filter: As a first filter stage, the Conditional Filter is applied. The time tags of trigger channels and
filtered channels are compared. If your device is able to introduce Adjustable hardware delay, this happens based
on the timestamp including the Hardware delay compensation and the additional delay set by TimeTaggerBase.
setDelayHardware (). Otherwise, the raw TDC time stamp is used. In both cases, the time order of these stamps
can deviate from the order of the input time stamps that you are dealing with usually.

5. Event Divider: As asecond filter stage, the Event Divider can be applied. Only every n-th time tag is transmitted,
all others are dismissed.

6. The bottleneck - USB transfer: The time tags are buffered and transmitted to the PC. At this point, after applying
Conditional Filter and Event Divider, it is important that the resulting data rate on average does not exceed the
maximum data rate.

7. setDelaySoftware: From now on, the Time Tagger hardware is not involved anymore. If your device does
not provide an adjustable hardware delay, the software compensates now the 7DC time stamp for the hard-
ware delay to provide you the input time stamp (it is possible to disable the hardware delay compensation, see
Control hardware delay compensation). In any case, you can modify this compensation by TimeTaggerBase.
setDelaySoftware().

8. Delayed Channel: The most flexible way to control the relative delay of your signals are Virtual Channels.

Consequences

The nature of the filtering process can produce counterintuitive results that need to be handled. We will explore these
cases based on the example of a fluorescence lifetime measurement. The sample is excited by a pulsed laser with a
repetition rate of 80 MHz (period of 12.5 ns), the laser synchronization signal is connected to channel #8. So channel
#8 is the high-frequency input that needs to be filtered. Fluorescence photons are collected by a single-photon detector
connected to channel #1 that will trigger the Conditional Filter. We set up a correlation measurement and look at
different cases:

TimeTagger.Correlation(tagger, 1, 8)

Case 1: Without the Conditional Filter set up, the Correlation measurement class provides a periodic signal. The
periodicity is a result of the multi-start/multi-stop approach of the Correlation measurement: A click on the detector
will contribute together with any laser synchronization pulse to the correlation, not only with the one that actually

122 Chapter 8. In Depth Guides

Time Tagger User Manual, Release 1.2.3-local-build

Case 1: |
without CF

Case 2: |
with CF

Case 3:
with CF, T

shifted —_— m— —

10 20 30

Case 4: /\
click prob. 1
© 40% [— /S — /.
-30 -20 -10 0
Time (ns)

stimulated the photon. Without the Conditional Filter, there will be a laser time tag every 12.5 ns. Because this high
frequency cannot be transferred for a long time, buffer overflows will lead to discarded data.

Case 2: With the Conditional Filter on, the data rate is highly reduced at the cost of losing the full periodicity of the
signal:

tagger.setConditionalFilter(trigger=[1], filtered=[8])

Now we observe that the majority of the events is in the range of a few nanoseconds. However, the signal does not
look like expected: Instead of a signal resembling one of the peaks from Case 1, a double peak appears. If you look
carefully at the signal, you can see that the lifetime curve is cut along the dotted line and one part is shifted by one period.
This indicates that the physical delay between the input channels is not designed properly. The scheme illustrates the
problem:

. 2 8
Trigger #1 A /;,T\ //,,T
1 //’// \ 1 1 1 //,/’/ I \
Filtered #8 - :l T3 :4 :5 :6/ :7 Tg
1 1 1 1 1
0 10 20 30 40 50 60 70 80
Time (ns)

The dashed line indicates which pulse excited the sample. If the photon is emitted early by the sample (click 2), it will
trigger the first pulse (click 3) after the stimulating one (click 1). In the second case, the photon is emitted late and the
subsequent laser pulse (click 7) has already passed. In this case, click 9 is passed and click 8 seems to be very early,
although it is quite late, in fact.

Case 3: To align the signal properly, having the signal in between two laser events, the strategy depends on your device:
With Time Tagger Ultra (with software version 2.8.0 and later) and Time Tagger X (with software version 2.12.0 and
later), you can use TimeTaggerBase.setDelayHardware () to align your signals. In the case of a Time Tagger 20,
however, you need to adjust your external delays. You might either modify optical path lengths or use cables of different
lengths.

Case 4: This case illustrates that the height of the higher-order peaks is determined by the count rate of your detector.
The relative height (compared to the center peak) is proportional to the probability for a laser synchronization pulse
to pass the Conditional Filter in the higher-order period. This probability is given by the probability that a detector
click occurs in the respective period and gates the synchronization click. In Case 1, without the Conditional Filter, the

8.1. Conditional Filter 123

Time Tagger User Manual, Release 1.2.3-local-build

probability is 100% - every synchronization pulse is passed. For Case 2 and Case 3, the probability has been set to
10%, in Case 4 it has been increased to 40%.

Note: In Cases 3 and 4, with external delays well adjusted to each other, you can see a signal at negative times. How
is this possible? Wouldn’t this mean that the laser synchronization click arrived earlier than the photon click that gated
it? Does my Time Tagger violate causality?

The answer is: No, it does not. The occurrence of negative delays is caused by the difference between the input time
stamps and the TDC time stamps. Negative delays occur in input time stamps, but causality must only be obeyed in
TDC time stamps (plus adjustable onboard delays, if available). The occurrence of negative delays indicates that the
hardware delay of channel #8 (laser synchronization) is larger than that of channel #1 (detector).

8.1.3 Setup of the Conditional Filter

The TimeTagger.setConditionalFilter () method expects two arguments, trigger and filtered, and accepts the
optional boolean argument hardwareDelayCompensation:

tagger.setConditionalFilter(trigger: list[int],
filtered: list[int],
hardwareDelayCompensation: bool = True)

The effect of trigger and filter can be reviewed in the Example configurations section.

Control hardware delay compensation

With the argument hardwareDelayCompensation you can decide whether the hardware delay is compensated or not.
This means, in fact, that you can decide whether you work with input time stamps or with TDC time stamps. If your
device supports adjustable onboard delays, you should never set this value to False and you can ignore this section.

hardwareDelayCompensation = True (default)
Pros
* Time tags are provided in the way you are used to it
* The signal position will not depend on the software version
Cons

* Negative time differences can occur between trigger-channel and filtered-channel and seemingly vio-
late causality

hardwareDelayCompensation = False
Pros

* Provided Time tags will be in the same temporal order as for the ConditionalFilter, no negative time
differences will occur

Cons
 Signal positions may change upon software update

 Affects all channels, not only the ones listed in frigger and filtered.

124 Chapter 8. In Depth Guides

Time Tagger User Manual, Release 1.2.3-local-build

Disable the Conditional Filter

To disable the Conditional Filter, you can either pass an empty lists or use the TimeTagger.
clearConditionalFilter () method:

tagger.setConditionalFilter([], []1)
or
tagger.clearConditionalFilter()

8.2 Raw Time-Tag-Stream access

There are several ways to access the raw time tags with the Time Tagger API. They can be split into two categories:
dumping together with post-processing and on-the-fly processing. Both ways will be explained in the following. They
are not exclusive so that you can combine them, also, with other measurements from our API in parallel.

8.2.1 Dumping and post-processing

All incoming time tags or selected channels of the Time Tagger can be stored on the hard drive via the Fileliriter.
Please visit the documentation and the provided programming examples of Fileliriter for further details.

There are two ways for post-processing the dumped data:
File Reader

By reading in the stored time tags with the FileReader, the tags stored can be processed natively in your preferred
programming language. You find examples of how to use the FileReader in your examples folder.

Virtual Time Tagger
The second option to process stored time tags is the Time Tagger Virtual. The Time Tagger Virtual allows you to use

the full Time Tagger API to post-process your data. You find examples of how to use the Time Tagger Virtual in your
examples folder.

8.2.2 On-the-fly processing

There are two options to process raw incoming data, the TimeTagStream and the CustomMeasurement, which will
be explained in the following:

TimeTagStream - high-level, lower performance

The TimeTagStream buffers the incoming raw data for on-the-fly processing. The TimeTagStream buffer must be
polled to retrieve the tags. You find examples of how to use the TimeTagStream in your examples folder.

8.2. Raw Time-Tag-Stream access 125

Time Tagger User Manual, Release 1.2.3-local-build

CustomMeasurement - low-level, higher performance

The CustomlMeasurement functionality allows you to access the raw time tag stream with very little overhead.
By inheriting from CustomMeasurement, you can implement your fully customized measurement class. The
CustomMeasurement . process () method of this class will be invoked as soon as new data is available. Note that this
functionality is only available for C++, C#, and Python. You find examples of how to use the CustomMeasurement in
your examples folder.

CustomVirtualChannel - modify the time tag stream - C++ only

It is now possible for you to modify the time tag stream, like our API does by inserting time tags, e.g., via Coincidence
or DelayedChannel. If you want to use this functionality, please contact Swabian Instruments support.

IteratorBase - C++ only

All measurements and virtual channels are derived from the IteratorBase class. You can see how to access the time
tag stream on the deepest level with the provided C++ examples.

8.3 Synchronization of the Time Tagger pipeline

In order to achieve a real-time evaluation of the events with high data rates, the Time Tagger series uses a pipeline
based parallel processing.

The hardware records a timestamp for every incoming event and stores it in a large on-device buffer. The size of this
buffer can be configured with setHardwareBufferSize(). The buffer contents are read by computer over USB,
typically in blocks of 128k events or when the time between the blocks exceeds 20 ms. Waiting until a block of data
is available is aimed at optimizing the USB throughput while limiting the time between consecutive block allows for
reducing data latency on slow event rates. The block size can be tuned by a user with setStreamBlockSize (). On the
computer, the blocks of data are processed by all running measurements in the order in which the measurements were
created. Only one measurement has access to a block at any given time. Once a measurement has finished processing
the block, it is ready to process the next block while the previous block becomes available to the next measurement.

Naturally, the transferring and processing of the data takes time and results in the latency. The latency between signal
arrival and its appearance in the measurement data is usually below 100 ms; however, it can become as large as a few
seconds if the on-device buffer fills up faster than the computer can transfer and process the data.

Proper operation of the pipeline and the control of the device parameters requires a suitable synchronization method.
Time Tagger uses the concept of fencing. A fence is a unique identifier that is sent by the software to the hardware. It is
added at the end of the on-device buffer data, streamed back to the computer along with timestamp data, and processed
by all measurement classes. Once the Time Tagger software detects the fence, it knows that it is located at the data
position which was in the buffer when the fence was created. The usefulness of fencing is easily demonstrated with a
following example. When you create a measurement, you expect that it starts processing data from that very instance
of time; however, it starts processing the data, which was recorded earlier and is already available in the buffer. With
fencing, the measurement creates a fence and begins data accumulation only when it receives the fence back. In this
way, the measurement is dealing with the data recorded as close to the measurement creation as possible and avoids
processing of the older data.

You can use the fencing mechanism manually. First, you have to create a new fence with TimeTaggerBase.
getFence() and then wait for it to be signaled with waitForFence() at any time later. If you want to create a
fence and immediately wait for it then using the sync () method is more convenient.

126 Chapter 8. In Depth Guides

CHAPTER
NINE

LINUX

9.1 Supported distributions

e CentOS 8
e Ubuntu 18.04 LTS
e Ubuntu 20.04 LTS

9.2 Installation

Download and install the package for your linux distribution from the Time Tagger downloads page https://www.
swabianinstruments.com/time-tagger/downloads/.

The package installs the Python and C++ libraries for amd64 systems including example programs.
Graphical user interface (web application):

* Launch via timetagger from the console or from the application launcher.

9.3 Known issues

¢ In case you have installed a previous version of the Time Tagger software, please reset the cache of your browser.

* Closing the web application server may cause an error message to appear.

9.4 Time Tagger with Python

Supported Python versions are 2.7, 3.5, 3.6, 3.7, 3.8, 3.9.
¢ Install NumPy (e.g. pip install numpy), which is required for the Time Tagger libraries.

* The Python libraries are installed in your default Python search path: /usr/1ib/pythonX.Y/dist-packages/
or /usr/1ib64/pythonX.Y/site-packages/.

* The examples can be found within the /usr/1ib/timetagger/examples/python/ folder.

127

https://www.swabianinstruments.com/time-tagger/downloads/
https://www.swabianinstruments.com/time-tagger/downloads/
https://numpy.org/doc/stable/user/index.html

Time Tagger User Manual, Release 1.2.3-local-build

9.5 Time Tagger with C++

* The examples can be found within the /usr/1ib/timetagger/examples/cpp/ folder.

e The header files can be found within the /usr/include/timetagger/ folder (-I /usr/include/
timetagger).

* The assembly shall be linked with /usr/1lib/1ibTimeTagger.so (-1 TimeTagger).

9.6 General remark

Please contact us in case you have any questions or comments about the Ubuntu or CentOS package and/or the API for
the Time Tagger.

The C++ interface will likely also work on other distributions out of the box. The source of the Python wrapper
_TimeTagger.cxx is provided in /usr/1ib64/pythonX.Y/site-packages/. For building the wrapper, the GNU
C++ compiler and the development headers of Python and numpy need to be installed. The resulting _TimeTagger. so
and the high-level wrapper TimeTagger . py relay the Time Tagger C++ interface to Python.

PYTHON_FLAGS=""python3-config --includes --libs™"
NUMPY_FLAGS="-1I"python3 -c \"print(__import__('numpy').get_include())\" "
TTFLAGS="-I/usr/include/timetagger -1TimeTagger"
CFLAGS="-std=c++17 -02 -DNDEBUG -fPIC $PYTHON_FLAGS $NUMPY_FLAGS S$TTFLAGS"

g++ -shared _TimeTagger.cxx $CFLAGS -o _TimeTagger.so

128 Chapter 9. Linux

CHAPTER
TEN

FREQUENTLY ASKED QUESTIONS

10.1 How to detect falling edges of a pulse?

On the software level, the rising and falling edges are independent channels. In the web application, these are marked
explicitly. In the software libraries, the number of a falling edge channel is a negative number of the physical channel,
e.g., the falling edges of the physical channel 2 correspond to the software channel -2. You can also use convenience
method getInvertedChannel () to find inverted channel number for your specific hardware revision.

Note: Time Taggers delivered before mid-2018 had different channel labeling scheme. For more details, please see
section Channel Number Schema 0 and 1.

10.2 What value should | pass to an optional channel?

You can specify a special integer value explicitly, but this is not recommended. Use the predefined constant
CHANNEL_UNUSED instead. For C++, the constant is defined in TimeTagger.h and is called CHANNEL_UNUSED.
In python, it is TimeTagger. CHANNEL_UNUSED.

10.3 Is it possible to use the same channel in multiple measurement
classes?

Yes, absolutely. All measurement objects that you create are able to access the same time tag stream and get the same
event information. This is by design of our API. Every measurement runs in its own separate thread and only the power
of your CPU (clock, number of cores) and memory will limit how many of them you can create. For example, in our
demonstration setup that we show on trade fairs, we run about 10 simultaneous measurements on a Microsoft Surface
tablet PC without a problem. Please note that the processing power required also depends on the event rate on physical
channels.

129

Time Tagger User Manual, Release 1.2.3-local-build

10.4 How do | choose a binwidth for a histogram?

With our Time Tagger you can choose any binwidth in the range from 1 ps to more than a day, all this range is defined
in 1 picosecond steps. Together with the number of bins this will define maximum time difference you will be able to
measure. Such a great flexibility lets you choose a proper binwidth purely based on the requirements of your experiment.

The following list of questions may help you to identify and decide on what binwidth value to choose.

1. What is the maximal time difference you want to measure?

histogram_span = binwidth * n_bins

Large values of n_bins require more memory and you may want to trade off binwidth for the smaller
n_bins in case you want to measure very long time differences. n_bins < le7 are usually fine if you
create measurements in MATLAB/Python/LabView/C++/C# etc. With the Time Tagger Web App,
the values of n_bins > 10000 may result in CPU load, due to transmitting larger amount of data to the
browser and refreshing the plot.

2. What time resolution do you expect from your measurement?

Smaller binwidth will give you finer time resolution of a histogram, however, keep in mind that the real
resolution is defined by the uncertainty of time measurement (timing jitter), which is 34 ps RMS for
Time Tagger 20, 10 ps RMS for Time Tagger Ultra and 2 ps RMS for Time Tagger X. Also, the timing
jitter of your detectors will introduce additional timing uncertainty to your measurement. Therefore,
you may want to choose a binwidth that is somewhat smaller than the measurement uncertainty of
your experiment. For example, with Time Tagger 20 the binwidth of >=10 ps is a good choice.

3. What signal-to-noise ratio (SNR) you would like to achieve and in what time?

Smaller binwidth will require a longer time to accumulate the sufficient number of counts to achieve
desired noise level compared to larger binwidth. This is referring to a shot-noise that is proportional
to 1/sqrt(N) where N is a number of counts in a single bin. This is the very same concept as SNR
improvement by averaging. Larger binwidths will naturally get larger counts per bin in a shorter time
for the same signal rates.

130 Chapter 10. Frequently Asked Questions

CHAPTER
ELEVEN

USAGE STATISTICS COLLECTION

You can help us developing and improving the Time Tagger by enabling automated usage statistics collection. The usage
statistics data collection is designed to help us better understand how the Time Tagger hardware and software are used.
This data includes the performance indicators, configuration, the state of the Time Tagger, and API usage patterns. The
usage statistics data is pseudonymized' and cannot be linked to a specific user or specific hardware unit. On installation
of the Time Tagger software, arandom user_id will be created and added to the usage statistics reports. Users can review
the contents of usage statistics data by using the getUsageStatisticsReport (). Also users can disable usage statis-
tics data collection at any time via Time Tagger API as setUsageStatisticsStatus(UsageStatisticsStatus.
Disabled). It is possible to enable the usage statistics collection temporarily and without automatic uploading which
may be helpful for debugging.

11.1 Contents of the usage statistics data

* Internal calibration data.
¢ Hardware sensor data obtainable with TimeTagger.getSensorData () but with the serial number obscured.
» Time Tagger’s configuration as returned by getConfiguration() but with the serial number obscured.

* All warning and error messages produced by the Time Tagger software. All identifying information like serial
numbers is obscured.

* Average, minimal, and maximal aggregate data rate sent over USB in each usage session.
» Usage and configuration of the measurements and their performance indicators.

» Computer’s processor name and capabilities, as well as the RAM size.

11.2 Ways of control

You will be asked to join Time Tagger improvement program during software installation. You can change your decision
at any later time by uninstalling and installing the Time Tagger software again.

You can also control usage statistics collection through the programming interface. The following examples show how
to perform key operations of enabling, disabling, and retrieving the usage statistics data. See also Usage statistics
Sfunctions.

I Here “pseudonymized” means that the user retains privacy of their data and remain unidentified as long as their user_id (pseudonym) is not
matched to their personal identity.

131

Time Tagger User Manual, Release 1.2.3-local-build

Get and set usage statistics collection status

0 - UsageStatisticsStatus.Disabled

1 - UsageStatisticsStatus.Collecting

2 - UsageStatisticsStatus.CollectingAndUploading
status = getUsageStatisticsStatus()

Enable usage statistics collection without uploading
setUsageStatisticsStatus(UsageStatisticsStatus.Collecting)

Enable usage statistics collection with uploading
setUsageStatisticsStatus(UsageStatisticsStatus.CollectingAndUploading)

Disable usage statistics collection
setUsageStatisticsStatus(UsageStatisticsStatus.Disabled)

Get current usage statistics data

json_string = getUsageStatisticsReport()

132 Chapter 11. Usage Statistics Collection

CHAPTER
TWELVE

REVISION HISTORY

12.1 V2.12.0 - 01.09.2022

Highlights

¢ Add support for our new high precision measurement device, the Time Tagger X, with a typical timing resolution
of 2.0 picoseconds.

WebApp

* Change default access mode to AccessMode. Control for Time Tagger Network.

Features
* Improve the performance of the Synchronizer. Two Time Tagger Ultras now can achieve a total data rate of over
100 Mtags per second.
¢ Add support for the new Ubuntu Long Term Support release 22.04 Jammy Jellyfish.

Behavior change

* All provided strings to the C++ API must be encoded as UTF-8, returning strings are also UTF-8 encoded.

* Rename getLicenselnfo() to TimeTagger.getDevicelLicense (). It returns a JSON formatted string for easier
processing.

* Drop support for obsolete Python versions 2.7 and 3.5 and for the obsolete Linux distributions CentOS 7 and
Ubuntu 16.04.

Examples

« Jitter verification requests the specified jitter values directly from the Time Tagger backend.

* FLIM example is now available for Matlab

133

Time Tagger User Manual, Release 1.2.3-local-build

Various Fixes and Improvements

* Fix Unicode characters in all filenames of Fileliriter and FileReader.

* Fix CoincidenceFactory for Matlab and Labview.

* Fix the F1im measurement for Matlab.

* Fix the crash on a failing license download within the initialization of the Network Time Tagger.

* Prefer a host-locked license over a user-locked license in the Virtual Time Tagger. This reduces the chance of a
false-positive anti-virus warning.

* Improve the rounding behavior of TimeTagger.getTriggerLevel ().

» Update of the USB driver for various fixes.

12.2 V2.11.0 - 22.04.2022

Highlights

¢ Introduced mergeStreamFiles () to combine several Fileliriter files into one.

Time Tagger Network

* New Protocol version 3.1 with a new set of features. Backward compatible with 3.0.

* Improved messages for connection loss and disconnection. Additionally, messages for connecting to new and
old versions of TTN will be presented.

* Fixed issue related to implicit call of sync() on measurement creation in AccessMode.Listen mode.
¢ Server and network information has been added to getConfiguration().

¢ Fixed crashes when streaming over 250 channels.

* Various race conditions and possible freezes have been fixed.

* Faster initialization of measurements with many channels.

* Fixed error handling on disconnection.

* Reduced connection timeout to 10 seconds.

* Fixed an issue where channels used by a client remained registered after a disconnect.

e TimeTagger.setTimeTaggerNetworkStreamCompression() can be utilized to double the maximum trans-
fer rate in a very slow network environment (<= 100 Mbit/s).

134 Chapter 12. Revision History

Time Tagger User Manual, Release 1.2.3-local-build

Time Tagger Virtual

e The TimeTaggerVirtual will now wait for a test signal channel to be registered before starting to stream it
(behavior identical to a hardware Time Tagger).

GatedChannel
* Optional constructor argument initial of type GatedChannelInitial to initialize the gate optionally in an open
state.

» Changed behavior if input_channel equals gate_start_channel or gate_stop_channel to allow for operation sim-
ilar to the ConditionalFilter.

FrequencyStability

* Fixed getTraceFrequency (); now it returns the relative frequency error instead of the relative period error.
* Traces are no longer truncated to the length of the maximum steps.

 Corrected behavior if stopped and restarted without clearing.

Other measurement classes

* HistogramLogBins: Removed bins which have a bin width of O ps.

e SynchronizedMeasurements: Methods calls on a SynchronizedMeasurements object without any regis-
tered measurements will no longer generate an exception but a warning.

e TimeDifferences: Added getHistogramIndex () to return the index of the histogram being processed cur-
rently.

* Exposed TagType to be used with TimeTagStream and CustomMeasurement.

Synchronizer

 Improved error messages.

* Fixed USB errors occurring under very high data rates.

Examples

¢ Added Visual Basic .NET example

Various Fixes

* Fixed crash on createTimeTagger () during a USB error.

* Fixed an issue where startFor() could run further than the specified time on HistogramLogBins and
FileWriter.

* WebApp: Fixed argument handling on Linux.
* Matlab: Supports now Resolution for HighRes.

* Matlab: Verifies that the version of the installed backend matches the wrapper version.

12.2. V2.11.0 - 22.04.2022 135

Time Tagger User Manual, Release 1.2.3-local-build

12.3 V2.10.6 - 16.03.2022

Improvements

* Adds support for Time Tagger Ultra with hardware revision 1.6b.

12.4 V2.10.4 - 23.02.2022

WebApp

¢ Fixed Input Delay for negative values.
* Fixed adding new channels for Countrate measurement.
* Fixed HistogramLogBins for low start times (< 10ps).

* Fixed units for data export of Counter, Correlation, Histogram2D, and HistogramLogBins measurements.

12.5 V2.10.2 - 31.12.2021

Improvements

¢ Added support for Python 3.10.

Fixes for issues since v2.10.0

* Fixed HistogramLogBins in the Web Application.
¢ Fixed DelayedChannel for negative delays.
* Fixed an issue with Counter.getDataTotalCounts () not resetting to 0 on clear().

» Fixed some Matlab examples not being compatible with 2016b or older.

12.6 V2.10.0 - 22.12.2021

Highlights

» Time Tagger Network: All Time Tagger devices and the acquired data can be accessed via the network from
multiple clients or locally across the different programming languages. The clients can use all TimeTagger
measurement classes and may optionally control the settings of the physical Time Tagger.

* A new frequency stability toolbox: It offers on-the-fly evaluation of periodic signals by calculating several anal-
ysis metrics, including, for example, the Allan deviation (ADEV) and time deviation (TDEV).

* Software Clock: The new recommended method for using an external clock on the Time Tagger Ultra. The
time tag stream is rescaled on the software side with respect to the connected clock. It allows for a broad input
frequency range and also calculates phase error estimators. In addition, the input jitter of the clock channel will
be averaged out, resulting in a lower jitter for measurements including the clock channel directly.

136 Chapter 12. Revision History

Time Tagger User Manual, Release 1.2.3-local-build

Features

* Counter: New Counter.getDataObject () returning data as an object of CounterData and allowing for con-
tinuous chunkwise data acquisition. This object contains the Counter data, timing information and overflow
flags.

* New HistogramND measurement, which is a multidimensional generalization of the older Histogram2D.
* New Sampler measurement class for a triggered sampling of the current state of other channels.

* Measurement and virtual channel settings can now be requested with getConfiguration() method. The set-
tings of all measurements are also available in the return value of getConfiguration() method.

WebApp

* A Time Tagger Network server can be activated in the settings.

Includes the Software Clock feature.
* Adds Event Divider settings.
» Shows specified RMS jitter for each channel in HighRes mode.

« It is now possible to specify the integration time in a single-shot or cyclic mode (internally uses startFor())
for all available measurement classes.

Performance
* Improved performance of Counter, Countrate, TimeTagStream, Combiner, DelayedChannel for many
channels.
* HistogramLogBins with an improved algorithm, multithreading, and AVX2+AVXS512 tuning.

* Coincidences improved for high input rates with low coincidence rates.

Behavior change

e TimeTagStream now always requires a list of channels.
* CustomMeasurement in Python: with self.mutex replaces self.lock and self.unlock.

* A Synchronizer with only one Time Tagger will use the timestamps of the Synchronizer but the channel identifiers
of the single device itself.

* No messages on the INFO level will be shown in Matlab to avoid running into deadlocks.

* std::invalid_argument exceptions are now wrapped as ValueError in Python.

12.6. V2.10.0 - 22.12.2021 137

https://docs.python.org/3/library/exceptions.html#ValueError

Time Tagger User Manual, Release 1.2.3-local-build

Examples

New Python example to measure the maximum transfer rate and the jitter.
New Python example to show coincidence counting applications.

New example to show the use of the software clock and measure the frequency stability of the test signal in
Python, Matlab and LabVIEW.

Update the Counter example in Python and Matlab to show the use of the new CounterData.

Fixes

Skips an unlikely blocking freeTimeTagger () call for up to 10 seconds.

Fixes the 64-bit signed integer overflow after 106 days on Linux.

Stops playing the last sound of setSoundFrequency () after freeTimeTagger().

Fixes the timing of TimeTagStreamBuffer. tGetData in the last block of FileReader.
Adds support for TTU HW revision 1.6 and TT20 Value.

Fixes the empty configuration and channel list in FileReader before fetching the first time tag.

Fixes a race condition on the Time Tagger Ultra, which may yield one invalid time tag after USB connection
errors.

Fixes a crash on using with CustomMeasurement() as c in Python.
Fixes incorrectly displayed units in the WebApp if measurement settings changed during a measurement.
Fixes the behavior of Histogram2D if start_channel matches a stop channel.

Fixes the behavior of Countrate with startFor if it ends within an overflow interval.

12.7 V2.9.0 - 07.06.2021

Highlights

Reduced communication latency of all Time Taggers.

Reduced Time Tagger 20 crosstalk on channel 1 and 2.

Improved USB connection stability for Time Tagger 20.

Optional collection and reporting of pseudonymous usage statistics. Improvement program.

Please use at least v2.9.0 for devices shipped from 2021 on.

138

Chapter 12. Revision History

Time Tagger User Manual, Release 1.2.3-local-build

Changes
» TimeTaggerBase.getConfiguration() and TimeTagger.getSensorData() return a JSON string with
partially renamed sensor names.
* Altered Countrate.getData() to return NaN (Not a Number) for zero capture durations.
* Uses enum. Enum as base class for all enumerators in the Python wrapper (Python >= 3.5).

* Improved the format of the Time Tagger error messages.

Features

* Added TimeTagger.setHardwareBufferSize () for the Time Tagger 20.
* Added an example and tutorial on how to work with a remote Time Tagger using Python and the Pyro5 package.

¢ License upgrades can be flashed now for the Time Tagger 20 via the web application.

Bug fixes

* Fixed TimeTagger.setStreamBlockSize () block size heuristic while uploading new configuration.
* Fixed slow performance of freeTimeTagger () in overflow mode.

* Fixed waitUntilFinished() invoke nodes in LabVIEW examples.

* Fixed error message in the Web Application for non compatible devices.

e Fixed TimeTaggerVirtual.getConfiguration(). Now it is returning configuration data for
TimeTaggerVirtual class.

* Fixed a possible crash on Python interpreter exit while running CustomMeasurement.

» Fixed TimeTaggerBase. sync () signaling one block too late. The fix reduces the sync, measurement start and
clear times.

12.8 V2.8.4 - 04.05.2021

* Fixed the initialization for a Virtual Time Tagger in the Web Application

12.9 V2.8.2 - 26.04.2021

* Fixed non appearing option to initialize in HighRes mode after upgrading/flashing the device in the Web Appli-
cation.

12.8. V2.8.4 - 04.05.2021 139

https://docs.python.org/3/library/enum.html#enum.Enum

Time Tagger User Manual, Release 1.2.3-local-build

12.10 v2.8.0 - 29.03.2021

Highlights

* High-resolution options for the Time Tagger Ultra series with a timing jitter of down to 4 ps RMS per channel.
» Hardware input delay on the Time Tagger Ultra series with picoseconds accuracy before the conditional filter.

* Reduced CPU load for Time Tagger Ultra.

Note: The release is fully compatible with all Time Tagger 20 devices. It is compatible with all Time Tagger Ultra
devices shipped from March 2021 and all earlier Time Tagger Ultra devices with 8 or less channels without HighRes
option. If you received Time Tagger Ultra before March 2021 and it has more than 8 channels or HighRes, it is not
compatible with the release. Please contact support to get a free device exchange to be fully compatible again.

New Time Tagger Ultra features

¢ Reduced crosstalk and thermal drift on all channels.

* The Time Tagger hardware sound module can be activated and set via TimeTagger. setSoundFrequency ().
It can be used, e.g., for optical alignment purposes (count rate -> frequency).

Changes
* Split TimeTaggerBase.setInputDelay() into TimeTaggerBase.setDelayHardware() and
TimeTaggerBase.setDelaySoftware().
e TimeTagger.getChannelList () filter enum renamed to ChannelEdge.
* TimeTagger.setNormalization() can now be configured per channel.
* Changed the default port of the WebApp to 50120 to avoid collision with Jupiter Notebooks.
* Maximum input frequency of the Time Tagger Ultra is reduced to 475 MHz.

* The deadtime specification of the Time Tagger Ultra changed to 2.1 ns. It can detect events separated by 2 ns
with possible loss of some events.

Features
e Added a TriggerOnCountrate virtual channel that generates events when a count rate crosses the given thresh-
old value.
* Added support for Python 3.9.

» waitUntilFinished() and sync have an optional timeout parameter.

140 Chapter 12. Revision History

Time Tagger User Manual, Release 1.2.3-local-build

Examples

* Mathematica: Added example for Fileliriter and TimeTaggerVirtual().
* LabVIEW: Fixed broken example (#14) and added it to the LabVIEW project.

e C++: Added an example for Custom Virtual Channel.

Bug fixes

» Histogram can be used with waitUntilFinished() and SynchronizedMeasurements. Histogram is now
derived from IteratorBase().

* Displaying the singleton warning of createTimeTagger just once.
* Fixed string conversion issue for old Matlab versions.

* Hide “unused argument” warnings in the TimeTagger C++ headers.

12.11 V2.7.6 - 26.04.2021

* Fixed RuntimeError “Got the USB error ‘UnsupportedFeature’” when calling createTimeTagger ()

12.12 V2.7.4 - 19.04.2021

* Fixed a bug for old Time Tagger Ultras, where the Web Application could not apply the license upgrade.

12.13 V2.7.2 - 22.12.2020

Highlights
* Reworked Flim implementation. Versatile high-level functionality with F1im and low-level CPU- and memory-
efficient access via F1imBase and callbacks.
* Highly improved TimeTaggerVirtual performance taking use of multithreading.

 Support for direct time tag stream access via Custom Measurements in C# and Python - see examples in the
installation folder.

Improvements

e Added AnyCPU targeted .NET Assembly for C# wrappers. Available in GAC_MSIL and the installation folder.

* More detailed error handling and human-readable error messages.

Added Conditional Filter for TimeTaggerVirtual.

* Removed Intel’s libmmd.dll library dependency.

¢ All measurements have the new common method waitUntilFinished (), which canbeused with startFor().
* Warnings are printed with time information.

* Cleanup of the C++ measurements’ header file.

12.11. V2.7.6 - 26.04.2021 141

Time Tagger User Manual, Release 1.2.3-local-build

Remote license upgrades can be performed via the web application.

Reworked Python and C# examples.

Fixes

Countrate no longer clears total counts on start().

Implemented TimeTagger.getChannellList () and TimeTaggerBase.waitForFence () in Matlab.

Fixed TimeTaggerBase. setDeadtime () for the TimeTaggerVirtual using TimeTagger.setTestSignal ().
Fixed a frequent crash in Fileliriter with high data rates and multiple files.

Fixed a crash in deleting measurements still registered to SynchronizedMeasurements.

Fixed an unlikely race condition of freeing measurements.

API changes

The old FLIM class is replaced by a new implementation: F1im. In case you need the old implementation, there
is a1 to 1 replacement, see here.

All methods and measurements now throw exceptions instead of warning on wrong arguments like invalid chan-
nels or out-of-range parameters.

Automatically call freeTimeTagger on del/clear/Dispose in Python/Matlab/LabVIEW/C# .
Removed the freeAllTimeTagger method.

Deprecate the multiple use of createTimeTagger () for one physical device. Pass on the timetagger object
instead.

_Log is renamed to LogBase.

Our libraries are compiled with VS 2019 now, so at least version 142 of the VC runtime is required in the final
application.

12.14 v2.7.0 - 01.10.2020

Highlights

New measurements are automatically synchronized to the hardware. All data analyzed is guaranteed to be tem-
poral later than the measurement’s initialization, start, or clear. Data coming from the internal buffer, which was
acquired before the measurement was initialized, started, or cleared, will not be analyzed. Before this release,
the .sync() method was required for these tasks.

142

Chapter 12. Revision History

Time Tagger User Manual, Release 1.2.3-local-build

Fixes and improvements

* Added a Matlab example for SynchronizedMeasurements.
* Fixed a bug in Matlab, creating synced measurements via SynchronizedMeasruements and .getTagger().

* The last datapoint from a scope measurement is not marked as invalid any more.

12.15 V2.6.10 - 07.09.2020

Fixes and improvements

* Fixes input delay, deadtime and test signal generator for the TimeTaggerVirtual.

* Fixes getlnvertedChannel with the Swabian Synchronizer and with Time Tagger Ultra 8 devices with the old
channel numbering schema.

* X axis is zoomable with Scope measurement.

* Better error handling for non-existent files with TimeTaggerVirtual and FileReader.

Python

* Changed the constants CoincidenceTimestamp_ to a Python enum (e.g., CoincidenceTimestamp_First is now
CoincidenceTimestamp.First).

Matlab

* Enum for timestamp argument for Coincidence(s) is available via TTCoincidenceTimestamp.

Linux

¢ Fix for slow Linux device opening.

12.16 V2.6.8 - 21.08.2020

Highlights

* Support for the Time Tagger Value edition. This is an upgradeable and cost-efficient version of the Time Tagger
Ultra for applications with moderate timing precision requirements.

12.15. V2.6.10 - 07.09.2020 143

Time Tagger User Manual, Release 1.2.3-local-build

Webapp

¢ Added Histogram2D to the measurement list.

* Improved performance and responsiveness for large datasets.

* 32-bit version of the Web Application works again.

* Fixed a bug that data of stopped measurements could not be saved.

* Fixed a bug that settings saved had the file extension .json instead of .ttconf ending.

* Fixed a bug when using falling edges for Time Tagger starting with channel 0.

Python

* Fixed a bug that some named arguments could not be used anymore.

API

¢ Added the method SynchronizedlMeasurements.unregisterMeasurement () to remove measurements
from SynchronizedMeasurements.

Backend

* Improved performance of the FileWriter, exceeding 100 M tags/s on high-end CPUs.

* Improved binning performance of all histogram measurements: Correlation, FLIM, Histogram, StartStop,
TimeDifferences, TimeDifferencesND.

* Fixes a deadlock in the virtual Time Tagger if a measurement accesses some public methods of the Time Tagger.

12.17 V2.6.6 - 10.07.2020

Highlights
¢ Swabian Synchronizer support. The Synchronizer hardware can combine 8 Time Tagger Ultras with up to 144
channels. The combined Time Tagger can be interfaced the very same as it would be only one device.

 Support for custom measurements in Python. Please see the provided programming example in the installation
folder for further details.

Webapp

* Support for the Synchronizer
» Showing error messages from setLogger API in a modal window

 Load/save settings is now supported for the Time Tagger Virtual

144 Chapter 12. Revision History

Time Tagger User Manual, Release 1.2.3-local-build

Time Tagger Ultra
* Hardware revision 1.1 now with the same performance enhancement of 500 MHz maximum sync rate, 2ns dead
time and better phase stability, as introduced before for Hardware revision > 1.1

* Dropped support for the very first Time Tagger Ultras, an error will be shown on initialization - free exchange
program available

* More intuitive byte order of the bitmask in setLED

Small modifications to the hardware channel to channel delay

Backend
* Coincidence and Coincideces have an optional parameter to select which timestamp should be inserted, the
last/first completing the coincidence, the average of the event timestamps, or the first of the coincidence list.
* Fixed .net/Matlab/LabVIEW wrappers for data with empty 2D or 3D arrays

* Provide a globally registered .NET publisher policy for C#, avoiding the ‘wrong dll version’ message in Labview
when updating the Time Tagger software

* setConditionalFilter throws an exception when invalid arguments are applied
 Hide the warning on fetching the TimeTaggerVirtual license without an internet connection
* DelayedChannel supports a negative delay

* Performance enhancements in StartStop

12.18 V2.6.4 - 27.05.2020

WebApp

» Option to enable logarithmic y-axis scaling for Counter, Histogram, HistogramLogBins and Correlation
* Redesign “Create measurement” dialog with links to the online documentation
* Fixed flickering when switching between plots

* Fixed plotting wrong data range when changing the number of data points

Added the basic functionality of the TimeTaggerVirtual (test signal only)

New features and improvements

Added the test signal to TimeTaggerVirtual

* Support for Ubuntu 20.04 and CentOS 8

e LabVIEW example for FileWriter and FileReader

* Improved Matlab API for VirtualTimeTagger, adding optional parameters

* Make the data transfer size configurable by .setStreamBlockSize

* Performance improvements for HistogramlL.ogBins

* Slightly improved timing jitter at large time differences for the Time Tagger 20

» Time Tagger Application works again with 32 bit operating systems

12.18. V2.6.4 - 27.05.2020 145

Time Tagger User Manual, Release 1.2.3-local-build

» Connection errors are shown in the Matlab console or can be handled with the new logger functionality
* Added custom logger examples for Matlab/Python/C#
Changes

» Updated the USB library
» Stop measurements when freeTimeTagger is called (e.g. closes files on dump, isRunning now returns false)
* Reduced polling rate (0.1s) for USB reconnections

API changes

* Added .setLogger() to attach a callback function for custom info/error logging
* Rename of enumeration ErrorLevel to LogLevel

* Rename of log level constants and with new corresponding integer values

12.19 V2.6.2 - 10.03.2020

Highlights

* TimeTaggerVirtual, FileWriter, and FileReader have reached a stable state

* Improved Linux support (documentation, compiling custom Python wrappers)

New features

Added setInputDelay, setDeadtime, getOverflows, and more to the TimeTaggerVirtual

* Add an optional parameter in setConditionalFilter for disabling the hardware delay compensation
* Infinite dumping in Dump for negative max_count

* Create a freeAllTimeTagger() method, which is called by Python atexit

¢ Reimplement SynchronizedMeasurements as a proxy tagger object, which auto registers new measurements with-
out starting them

* The new SynchronizedMeasurements.isRunning() method returns if any measurement is still running
 Python: Distribute the generated C++ wrapper source for supporting future Python revisions
e C++: New IteratorBase.getLock method returning a std::unique_lock

e C++: Improved exception handling for custom measurements: exceptions now stop the measurement, runSyn-
chronized forwards exceptions to the caller

146 Chapter 12. Revision History

Time Tagger User Manual, Release 1.2.3-local-build

API changes

» TimeTagger.getVersion return value is changed to a string
e C++: Use 64 bit integers for the dimensions in the array_out helpers
¢ C++: Rename the base class for custom measurements from _Iterator to IteratorBase

¢ C++: Constructors of custom measurements shall call finishInitialization instead of IteratorBase.start

Python 2.7: Update the numpy C headers to 1.16.1

Examples and documentation

* Improved Histogram2D example

¢ Clarify setInputDelay vs DelayedChannel

Bug fixes

* Relax the voltage supply check in the Time Tagger Ultra hardware revision 1.4

* Use a 1 MB buffer for Dump, FileWriter, and FileReader to achieve full speed especially on network devices
* Fix getTimeTaggerModel on an active device

* Fix deadlock within sync() while the device is disconnected

* Provide the documentation on Linux

* Several fixes and improvements for the FileWriter and TimeTaggerVirtual

WebApp

* Improved default names for measurements
» Not relying on data stored within the browser any more
* Disabling mouse scrolling within numeric inputs

¢ Various buxfixes

12.20 V2.6.0 - 23.12.2019

Highlights
* FileWriter: New space-efficient file writer for storing time tag stream on a disk. The file size is reduced by a
factor of 4 to 8. Replaces the Dump function.
* Virtual Time Tagger allows to replay previously dumped events back into the Time Tagger software engine.

 Improved behavior in the overflow mode. The hardware now also reports the amount of missed events per input
channel and provides the start and the end timestamps of the overflow interval.

* New tutorial on how to implement the data acquisition for a confocal microscope
* New measurement Histogram?2D for 2-dimensional histogramming with examples

* Web App: Selectable input units (s/ms/us/ps) instead of ps only

12.20. V2.6.0 - 23.12.2019 147

Time Tagger User Manual, Release 1.2.3-local-build

Known issues

* FileWriter and FileReader have a low performance on network devices

API changes

* deprecated TimeTagStreamBuffer.getOverflows() — use .getEventTypes() instead
 renamed HistogramLogBin.getDataNormalized() to .getDataNormalizedCountsPerPs()
» removed deprecated TimeTagger.getChannels() - use .getChannelList() instead

» removed deprecated CHANNEL_INVALID - use CHANNEL_UNUSED instead

» removed deprecated TimeTagger.setFilter() and TimeTagger.getFilter() - use .setConditionalFilter(), .getCondi-
tionalFilter(), and .clearConditionalFilter() instead

¢ C++: All custom measurement class constructors must be modified, such that the parameter containing the Time
Tagger is of the type TimeTaggerBase. This allows for using the custom measurement within a real Time Tagger
object and the Time Tagger Virtual.

e C++: The struct Tag includes the type of event and the amount of missed events. They have replaced the overflow
field.

e C++/Windows: We additionally distribute binaries for the debug runtime (/MDd)

e Matlab: TimeTagger.free() is now deprecated, use .freeTimeTagger()

New features

e Web App: Normalization (counts/s) for the Counter measurement

* getConfiguration returns the current hardware configuration as a JSON string

* added g2 normalization for HistogramLogBins with getDataNormalizedG2

 improved overflow behavior for Countrate due to the missed event counters

 improved overflow handling for the g2 normalization of Correlation and HistogramLogBin
* support for Python version 3.8

» smaller latency on low data rates due to adaptive chunk sizes of <= 20 ms

* support for the Time Tagger Ultra hardware revision 1.4

Examples

* Matlab: Faster loading of events from disk for now deprecated Dump file format
¢ C++: Loading events from disk stored in the new data format
» Labview: Scope example, .NET version redirection

* Mathematica: Improved example

Python: Added “Stop” button to the countrate figure.

148 Chapter 12. Revision History

Time Tagger User Manual, Release 1.2.3-local-build

Bug fixes

» fixed static input delay error with conditional filter enabled since v2.2.4

* added missing TimeTagger.getTestSignalDivider() method

* Scope: Fix the output if one channel has had no events

* resolve overflows after the initialization of the Time Tagger 20

* fixes an issue with wrongly sorted events on the reconfiguration of input delays
* always emit an error event on plugging an external clock source

* fixes an unlikely case when the synchronization of the external clock got lost

* the new USB driver version fixes some random data abruption

e TTU1.3: Fix a bug which may select a wrong clock source in the first 21 seconds and wrongly activated ext clock
LED

* Matlab: SynchronizedMeasurements work now in Matlab, too

* different improvements within the python and C# wrappers

e LED turns off and not red after freeing a Time Tagger

* Dump now releases the file handle after the end of the startFor duration

* Web App: Removed caching issues when up or downgrading the software

12.21 V2.4.4 - 29.07.2019

* reduced crosstalk between nonadjacent channels of the Time Tagger Ultra

* fixed a bug leading to high crosstalk with V2.4.2 for specific channels

* fixed a rare clock selection issue on the Time Tagger 20

 improved and more detailed documentation

¢ new method Countrate.getCountsTotal (), which returns the absolute number of events counted
* new Mathematica quickstart example

* new Scope example for LabVIEW

* support of the Time Tagger 20 series with hardware revision 2.3

* release the Python GIL while in the Time Tagger engine code

* fixed abug in ConstantFractionDiscriminator, which could cause that no virtual tags were generated

12.21. V2.4.4 - 29.07.2019 149

Time Tagger User Manual, Release 1.2.3-local-build

12.22 V2.4.2 - 12.05.2019

* support of the Time Tagger Ultra series with hardware revision 1.3
 improve performance of short pulse sequences on the Time Tagger 20 series
* improve overflow behavior at too high input data rates

* fix the name of the ‘SynchronizedMeasurements’ measurement class

12.23 V2.4.0 - 10.04.2019

Libraries

* 32 bit C++ library added

¢ C++ and .NET libraries renamed and registered globally

API

* virtual constant fraction discriminator channel ‘ConstantFractionDiscriminator’ added
* ‘TimeDifferenceND’ added for multidimensional time differences measurements

* faster binning in ‘TimeDifferences’ and ‘Correlation’ measurements

 improved memory handling for “TimeTageStream’

» improved Python library include

* fixed ‘.getNormalizedData’ for ‘Correlation’ measurements

e various minor bug fixes and improvements

Examples

* LabVIEW project for 32 and 64 bit
» improved LabVIEW examples

Time Tagger Ultra

* 10 MHz EXT input clock detection enabled

« internal buffer size can be increased from 40 MTags to 512 MTags with ‘setHardwareBufferSize’
* reduced crosstalk and timing jitter

* increased maximum transfer rate to above 65 MTags/s (Intel 5 GHz CPU on 64 bit)

e various performance improvements

¢ reduced deadtime to 2 ns on hardware revision >= 1.2

150 Chapter 12. Revision History

Time Tagger User Manual, Release 1.2.3-local-build

Time Tagger 20

* 166.6 MHz EXT input clock detection enabled

Operating systems

¢ equivalent support for Windows 32 and 64 bit, Ubuntu 16.04 and 18.04 64 bit, CentOS 7 64 bit

12.24 V2.2.4 - 29.01.2019

* fix the conditional filter with filter and trigger events arriving within one clock cycle
* fix issue with negative input delays

e calling .stop() while dumping data stops the dump and closes the file

* fix device selection on reconnection after transfer errors

 synchronize tags of falling edges to their raising ones

12.25 vV2.2.2 - 13.11.2018

* Removed not required Microsoft prerequisites.

¢ 32 bit version available

12.26 V2.2.0 - 07.11.2018

General improvements

* support for devices starting with channel 1 instead of 0

* under certain circumstances, the crosstalk for the Time Tagger 20 of channel 0-2, 0-3, 1-2, and 1-3 was highly
increased, which has been fixed now

* updated and extended examples for all programming languages (Python, Matlab, C#, C++, LabVIEW)
* C++ examples for Visual Studio 2017, with debug support

* documentation for virtual channels

* Web app included in the 32 bit installer

* Linux package available for Ubuntu 16.04

* Support for Python 3.7

12.24. V2.2.4 - 29.01.2019 151

Time Tagger User Manual, Release 1.2.3-local-build

API

» ‘HistogramLogBin’ allows analyzing incoming tags with logarithmic bin sizes.

* ‘FrequencyMultiplier’ virtual channel class for upscaling a signal attached to the Time Tagger. This method can
be used as an alternative to the ‘Conditonal Filter’.

* ‘SynchronizedMeasurements’ class available to fully synchronize start(), stop(), clear() of different measure-
ments.

¢ Second parameter from ‘setConditionalFilter’ changed from ‘filter’ to ‘filtered’.

Web application

« full ‘setConditionalFilter’ functionality available from the backend within the Web application

12.27 V2.1.6 - 17.05.2018

fixed an error with getBinWidths from CountBetweenMarkers returning wrong values

12.28 V2.1.4 - 21.03.2018

fixed bin equilibration error appearing since V2.1.0

12.29 V2.1.2 - 14.03.2018

fixed issue installing the Matlab toolbox

12.30 V2.1.0 - 06.03.2018

Time Tagger Ultra

« efficient buffering of up to 60 MTags within the device to avoid overflows

12.31 V2.0.4 - 01.02.2018

Bug fixes

¢ Closing the web application server window works properly now

152 Chapter 12. Revision History

Time Tagger User Manual, Release 1.2.3-local-build

12.32 vV2.0.2 - 17.01.2018

Improvements

* Matlab GUI example added

* Matlab dump/load example added
Bug fixes

e dump class writing tags multiple times when the optional channel parameter is used
* Counter and Countrate skip the time in between a .stop() and a .start() call

¢ The Counter class now handles overflows properly. As soon as an overflow occurs the lost data junk is skipped
and the Counter resumes with the new tags arriving with no gap on the time axis.

12.33 V2.0.0 - 14.12.2017

Release of the Time Tagger Ultra

Note: The input delays might be shifted (up to a few hundred ps) compared to older driver versions.

Documentation changes

* new section ‘In Depth Guides’ explaining the hardware event filter

Webapp

« fixed a bug setting the input values to O when typing in a new value

* new server launcher screen which stops the server reliably when the application is closed

12.34 V1.0.20 - 24.10.2017

Virtual Channels

* DelayedChannel clones and optionally delays a stream of time tags from an input channel

* GatedChannel clones an input stream, which is gated via a start and stop channel (e.g. rising and falling edge of
another physical channel)

12.32. V2.0.2 - 17.01.2018 153

Time Tagger User Manual, Release 1.2.3-local-build

API

startFor(duration) method implemented for all measurements to acquire data for a predefined duration
getCaptureDuration() available for all measurements to return the current capture duration
getDataNormalized() available for Correlation

setEventDivider(channel, divider) also transmits every nth event (divider) on channel defined

Webapp

label for O on the x-axis is now 0 instead of a tiny value

C++ API:

internal change so that clear_impl() and next_impl() must be overwritten instead of clear() and next()

Other bug fixes/improvements

improved documentation and examples

12.35 V1.0.6 - 16.03.2017

Web application (GUI)

API

load/save settings available for the Time Tagger and the measurements
correct x-axis scaling

input channels can be labeled

save data as tab separated output file (for Matlab, Excel, ... import)
fixed: saving measurement data now works reliably

fixed: ‘Initialize’ button of measurements works now with tablets and phones

direct time stream access possible with new class TimeTagStream (before the stream could be only dumped with
Dump)

Python 3.6 support

better error handling (throwing exceptions) when libraries not found or no Time Tagger attached
setTestSignal(...) can be used with a vector of channels instead of a single channel only
Dump(...) now with an optional vector of channels to explicitly dump the channels passed
CHANNEL_INVALID is deprecated - use CHANNEL_UNUSED instead

Coincidences class (multiple Coincidences) can be used now within Matlab/LabVIEW

154

Chapter 12. Revision History

Time Tagger User Manual, Release 1.2.3-local-build

Documentation changes
* documentation of every measurement now includes a figure
* update and include web application in the quickstart section
Other bug fixes/improvements

* no internal test tags leaking through from the initialization of the Time Tagger
¢ Counter class not clearing the data buffer in time when no tags arrive
* search path for bitfile and libraries in Linux now work as they should

e installer for 32 bit OS available

12.36 V1.0.4 - 24.11.2016

Hardware changes

« extended event filter to multiple conditions and filter channels
* improved jitter for channel 0
¢ channel delays might be different from the previous version (< 1 ns)

API changes

» new function setConditionalFilter allows for multiple filter and event channels (replaces setFilter)
* Scope class implements functionality to use the Time Tagger as a 50 GHz digitizer

* Coincidences class now can handle multiple coincidence groups which is much faster than multiple instances of
Coincidence

* added examples for C++ and .net

Software changes

» improved GUI (Web application)

Bug fixes

* Matlab/LabVIEW is not required to have the Visual Studio Redistributable package installed

12.36. V1.0.4 - 24.11.2016 155

Time Tagger User Manual, Release 1.2.3-local-build

12.37 V1.0.2 - 28.07.2016

Major changes:

* LabVIEW support including various example VIs

* Matlab support including various example scripts

* .net assembly / class library provided (32 and 64 bit)

* WebApp graphical user interface to get started without writing a single line of code

* Improved performance (multicore CPUs are supported)

API changes:

* reset() function added to reset a Time Tagger device to the startup state
* getOverflowsAndClear() and clearOverflows() introduced to be able to reset the overflow counter

* support for python 3.5 (32 and 64 bit) instead of 3.4

12.38 V1.0.0

initial release supporting python

12.39 Channel Number Schema 0 and 1

The Time Taggers delivered before mid 2018 started with channel number 0, which is very convenient for most of the
programming languages.
Nevertheless, with the introduction of the Time Tagger Ultra and negative trigger levels, the falling edges became more

and more important, and with the old channel schema, it was not intuitive to get the channel number of the falling edge.

This is why we decided to make a profound change, and we switched to the channel schema which starts with channel 1
instead of 0. The falling edges can be accessed via the corresponding negative channel number, which is very intuitive
to use.

Time Tagger 20 and Ultra 8 Time Tagger Ultra 18 Schema

rising falling rising falling
old Oto7 8to 15 Oto 17 18 to 35 TT_CHANNEL_NUMBER_SCHEME_ZERO
new | 1to8 -1to-8 1to 18 -1to-18 TT_CHANNEL_NUMBER_SCHEME_ONE

With release V2.2.0, the channel number is detected automatically for the device in use. It will be according to the
labels on the device.

In case another channel schema is required, please use setTimeTaggerChannelNumberScheme (int scheme) be-
fore the first Time Tagger is initialized. If several devices are used within one instance, the first Time Tagger initialized
defines the channel schema.

int getInvertedChannel(int channel) wasintroduced to get the opposite edge of a given channel independent
of the channel schema.

156 Chapter 12. Revision History

A

AccessMode (built-in class), 42

Al11 (ChannelEdge attribute), 43

autoCalibration() (TimeTagger method), 58
Average (CoincidenceTimestamp attribute), 43
averaging_periods (SoftwareClockState attribute), 66

B

bins (FlimFramelnfo attribute), 100

built-in function
createTimeTagger(), 45
createTimeTaggerNetwork(), 45
createTimeTaggerVirtual (), 45
freeTimeTagger(), 46
getTimeTaggerChannelNumberScheme (), 47
getTimeTaggerServerInfo(), 46
getUsageStatisticsReport(), 48
getUsageStatisticsStatus(), 48
mergeStreamFiles(), 47
scanTimeTagger (), 46
scanTimeTaggerServers(), 46
setLogger(), 47
setTimeTaggerChannelNumberScheme(), 47
setUsageStatisticsStatus(), 48

C

CHANNEL_UNUSED (built-in variable), 42

ChannelEdge (built-in class), 43

clear () (Dump method), 113

clear () (lteratorBase method), 77

clear () (SynchronizedMeasurements method), 116

clearConditionalFilter () (TimeTagger method), 55

clearOverflows () (TimeTaggerBase method), 51

clearOverflowsClient () (TimeTaggerNetwork
method), 66

clock_period (SoftwareClockState attribute), 66

Closed (GatedChannellnitial attribute), 44

Coincidence (built-in class), 69

Coincidences (built-in class), 70

CoincidenceTimestamp (built-in class), 43

Collecting (UsageStatisticsStatus attribute), 44

INDEX

CollectingAndUploading (UsageStatisticsStatus at-
tribute), 45

Combiner (built-in class), 68
ConstantFractionDiscriminator (built-in class), 73
Control (AccessMode attribute), 42
Correlation (built-in class), 91
CountBetweenMarkers (built-in class), 83
Counter (built-in class), 80
CounterData (built-in class), 81
Countrate (built-in class), 79
createTimeTagger()

built-in function, 45
createTimeTaggerNetwork ()

built-in function, 45
createTimeTaggerVirtual ()

built-in function, 45
CustomMeasurement (built-in class), 117

D

DelayedChannel (built-in class), 72

Disabled (UsageStatisticsStatus attribute), 44

disableLEDs () (TimeTagger method), 60

disableSoftwareClock() (ZimeTaggerBase method),
52

dropped_bins (CounterData attribute), 81

Dump (built-in class), 112

E

enabled (SoftwareClockState attribute), 67

Error (TagType attribute), 44

error_counter (SoftwareClockState attribute), 67
Event (built-in class), 114

EventGenerator (built-in class), 74

External delay, 122

F

Falling (ChannelEdge attribute), 43
FileReader (built-in class), 111
FileWriter (built-in class), 110

First (CoincidenceTimestamp attribute), 43
Flim (built-in class), 96

FlimBase (built-in class), 102

157

Time Tagger User Manual, Release 1.2.3-local-build

FlimFrameInfo (built-in class), 100
frame_number (FlimFramelnfo attribute), 100
frameReady () (Flim method), 100
frameReady () (FlimBase method), 102
freeTimeTagger ()

built-in function, 46
FrequencyMultiplier (built-in class), 70
FrequencyStability (built-in class), 104
FrequencyStabilityData (built-in class), 105

G

GatedChannel (built-in class), 71
GatedChannelInitial (built-in class), 43
getADEV() (FrequencyStabilityData method), 105
getADEVScaled() (FrequencyStabilityData method),
106
getBinEdges () (HistogramLogBins method), 88
getBinWidths () (CountBetweenMarkers method), 84
getCaptureDuration() (lteratorBase method), 78
getChannel O (VirtualChannel method), 68
getChannelAbove () (TriggerOnCountrate method), 75
getChannelBelow() (TriggerOnCountrate method), 75
getChannellist () (TimeTlagger method), 58
getChannels () (TimeTagStreamBuffer method), 109
getChannels () (TriggerOnCountrate method), 75
getChannels () (VirtualChannel method), 68

getConditionalFilterFiltered() (TimeTagger
method), 55

getConditionalFilterTrigger() (TimeTagger
method), 55

getConfiguration() (FileReader method), 112

getConfiguration() (IteratorBase method), 78

getConfiguration() (TimeTaggerBase method), 54

getConfiguration() (TimeTaggerVirtual method), 64

getCounts () (TimeDifferences method), 94

getCountsTotal () (Countrate method), 79

getCurrentCountrate() (TriggerOnCountrate
method), 75

getCurrentFrame () (Flim method), 97

getCurrentFrameEx () (Flim method), 97

getCurrentFrameIntensity() (Flim method), 97

getDACRange () (TimeTagger method), 58

getData() (Correlation method), 91

getData() (CountBetweenMarkers method), 83

getData() (Counter method), 80

getData() (CounterData method), 82

getData() (Countrate method), 79

getData() (FileReader method), 112

getData() (Histogram method), 86

getData () (Histogram2D method), 89

getData() (HistogramLogBins method), 87

getData() (HistogramND method), 90

getData() (Sampler method), 115

getData() (Scope method), 114

getData() (StartStop method), 85
getData() (TimeDifferences method), 93
getData() (TimeTagStream method), 108
getDataAsMask () (Sampler method), 115
getDataNormalized () (Correlation method), 91
getDataNormalized () (Counter method), 81
getDataNormalized() (CounterData method), 82
getDataNormalizedCountsPerPs() (HistogramLog-
Bins method), 88
getDataNormalizedG2 () (HistogramLogBins method),
88
getDatalObject () (Counter method), 81
getDataObject () (FrequencyStability method), 104
getDataTotalCounts() (Counter method), 81
getDataTotalCounts() (CounterData method), 82
getDeadtime() (TimeTaggerBase method), 51
getDelayClient () (TimeTaggerNetwork method), 66
getDelayHardware () (TimeTaggerBase method), 50
getDelaySoftware() (TimeTaggerBase method), 50
getDeviceLicense() (TimeTagger method), 60
getDistributionCount () (TimeTagger method), 58
getDistributionPSec() (TimeTagger method), 59
getEventDivider () (TimeTagger method), 56
getEventTypes () (TimeTagStreamBuffer method), 109
getFence() (TimeTlaggerBase method), 52
getFrameNumber () (FlimFramelnfo method), 100
getFramesAcquired() (Flim method), 98
getHardwareDelayCompensation()
method), 54
getHDEV() (FrequencyStabilityData method), 105
getHDEVScaled() (FrequencyStabilityData method),
107
getHistogramIndex () (TimeDifferences method), 93
getHistograms () (FlimFramelnfo method), 101
getIndex() (Correlation method), 92
getIndex() (CountBetweenMarkers method), 83
getIndex() (Counter method), 81
getIndex() (CounterData method), 81
getIndex() (Flim method), 98
getIndex() (Histogram method), 86
getIndex() (Histogram2D method), 89
getIndex() (HistogramND method), 90
getIndex() (TimeDifferences method), 93
getIndex_1(Q) (Histogram2D method), 89
getIndex_2 () (Histogram2D method), 89
getInputDelay() (TimeTaggerBase method), 49
getInputHysteresis() (Timelagger method), 56
getInputImpedanceHigh() (TimeTagger method), 56
getIntensities() (FlimFramelnfo method), 101
getInvertedChannel () (TimeTaggerBase method), 53
getMaxFileSize () (FileWriter method), 110
getMDEV() (FrequencyStabilityData method), 105
getMissedEvents() (TimeTagStreamBuffer method),
109

(TimeTagger

158

Index

Time Tagger User Manual, Release 1.2.3-local-build

getModel O (TimeTagger method), 57
getNormalization() (TimeTagger method), 57
getOverflowMask () (CounterData method), 82
getOverflows() (TimelaggerBase method), 51
getOverflows () (TimeTagStreamBuffer method), 109
getOverflowsAndClear() (TimeTaggerBase method),
51
getOverflowsAndClearClient ()
work method), 66
getOverflowsClient () (TimeTlaggerNetwork method),
66
getPcbVersion() (TimeTagger method), 58
getPixelBegins () (FlimFramelnfo method), 101
getPixelEnds () (FlimFramelnfo method), 101
getPixelPosition() (FlimFramelnfo method), 101
getPsPerClock () (Timelagger method), 59
getReadyFrame () (Flim method), 98
getReadyFrameEx () (Flim method), 98
getReadyFrameIntensity () (Flim method), 98
getReplaySpeed () (TimeTaggerVirtual method), 64
getSensorData() (TimeTagger method), 60
getSerial () (TimeTagger method), 57
getSoftwareClockState() (TimeTaggerBase
method), 52
getSTDD() (FrequencyStabilityData method), 106
getSummedCounts () (FlimFramelnfo method), 101
getSummedFrames () (Flim method), 99
getSummedFramesEx () (Flim method), 99
getSummedFramesIntensity () (Flim method), 99
getTagger) (SynchronizedMeasurements method), 117
getTau() (FrequencyStabilityData method), 105
getTDEV() (FrequencyStabilityData method), 106
getTestSignal () (TimeTagger method), 57
getTestSignalDivider () (TimeTagger method), 60
getTime () (CounterData method), 82
getTimestamps () (TimeTlagStreamBuffer method), 109
getTimeTaggerChannelNumberScheme ()
built-in function, 47
getTimeTaggerServerInfo()
built-in function, 46
getTotalEvents () (FileWriter method), 111
getTotalSize () (FileWriter method), 111
getTraceFrequency () (FrequencyStabilityData
method), 107
getTraceIndex() (FrequencyStabilityData method),
107
getTracePhase() (FrequencyStabilityData method),
107
getTriggerLevel () (TimeTagger method), 54
getUsageStatisticsReport()
built-in function, 48
getUsageStatisticsStatus()
built-in function, 48

(TimeTaggerNet-

H

Hardware delay, 121

hasData() (FileReader method), 112
hasOverflows (TimeTagStreamBuffer attribute), 108
HIGH (State attribute), 114

HighResA (Resolution attribute), 44
HighResAll (ChannelEdge attribute), 43
HighResB (Resolution attribute), 44
HighResC (Resolution attribute), 44
HighResFalling (ChannelEdge attribute), 43
HighResRising (ChannelEdge attribute), 43
Histogram (built-in class), 85

Histogram2D (built-in class), 89
HistogramLogBins (built-in class), 87
HistogramND (built-in class), 90

ideal_clock_channel (SoftwareClockState attribute),
66

injectCurrentState() (TriggerOnCountrate method),
75

Input time stamp, 121

input_channel (SoftwareClockState attribute), 66

is_locked (SoftwareClockState attribute), 67

isAbove () (TriggerOnCountrate method), 75

isAcquiring () (Flim method), 99

isAcquiring () (FlimBase method), 102

isBelow() (TriggerOnCountrate method), 76

isConnected() (TimeTaggerNetwork method), 65

isRunning () (lteratorBase method), 77

isRunning () (SynchronizedMeasurements method), 116

isServerRunning () (TimeTagger method), 61

isUnusedChannel () (TimeTaggerBase method), 53

isValidQ) (FlimFramelnfo method), 100

IteratorBase (built-in class), 77

L

Last (CoincidenceTimestamp attribute), 43

last_ideal_clock_event (SoftwareClockState
tribute), 67

ListedFirst (CoincidenceTimestamp attribute), 43

Listen (AccessMode attribute), 42

LOW (State attribute), 114

M

mergeStreamFiles()

built-in function, 47
MissedEvents (TagType attribute), 44
mutex (CustomMeasurement attribute), 118

O

on_frame_end() (Flim method), 100
on_frame_end () (FlimBase method), 103

at-

Index

159

Time Tagger User Manual, Release 1.2.3-local-build

Open (GatedChannellnitial attribute), 44
overflow (CounterData attribute), 81
OverflowBegin (TagType attribute), 44
OverflowEnd (TagType attribute), 44

P

period_error (SoftwareClockState attribute), 67

phase_error_estimation (SoftwareClockState
tribute), 67

pixel_position (FlimFramelnfo attribute), 100

pixels (FlimFramelnfo attribute), 100

process() (CustomMeasurement method), 117

R

ready () (CountBetweenMarkers method), 84

ready () (TimeDifferences method), 94

registerMeasurement() (SynchronizedMeasurements
method), 116

replay() (TimeTaggerVirtual method), 63

reset () (TimeTagger method), 54

Resolution (built-in class), 44

Rising (ChannelEdge attribute), 43

S

Sampler (built-in class), 115
scanTimeTagger)

built-in function, 46
scanTimeTaggerServers()

built-in function, 46
Scope (built-in class), 113
setConditionalFilter () (TimeTagger method), 55
setDeadtime () (TimeTaggerBase method), 50
setDelay() (DelayedChannel method), 72
setDelayClient () (TimeTaggerNetwork method), 65
setDelayHardware () (TimeTaggerBase method), 49
setDelaySoftware () (TimeTaggerBase method), 50
setEventDivider () (TimeTagger method), 55
setHardwareBufferSize () (TimeTagger method), 58
setInputDelay() (TimeTaggerBase method), 49
setInputHysteresis() (TimeTagger method), 56
setInputImpedanceHigh() (TimeTagger method), 56
setLED() (TimeTlagger method), 60
setLogger()

built-in function, 47
setMaxCounts () (TimeDifferences method), 93
setMaxFileSize() (FileWriter method), 110
setNormalization() (TimeTagger method), 57
setReplaySpeed () (TimeTaggerVirtual method), 64
setSoftwareClock () (TimelaggerBase method), 51
setSoundFrequency () (TimeTagger method), 61
setStreamBlockSize () (TimeTagger method), 59
setTestSignal () (TimeTagger method), 57
setTestSignalDivider () (TimeTagger method), 59
setTimeTaggerChannelNumberScheme ()

at-

built-in function, 47

setTimeTaggerNetworkStreamCompression()
(TimeTagger method), 59

setTriggerLevel () (TimeTagger method), 54
setUsageStatisticsStatus()

built-in function, 48
size (CounterData attribute), 81
size (TimeTagStreamBuffer attribute), 108
SoftwareClockState (built-in class), 66
split () (FileWriter method), 110
Standard (Resolution attribute), 44
StandardAll (ChannelEdge attribute), 43
StandardFalling (ChannelEdge attribute), 43
StandardRising (ChannelEdge attribute), 43
start () (lteratorBase method), 77
start() (SynchronizedMeasurements method), 116
startFor () (IteratorBase method), 77
startFor () (SynchronizedMeasurements method), 116
startServer () (TimeTagger method), 61
StartStop (built-in class), 84
State (built-in class), 114
state (Event attribute), 114
stop() (Dump method), 113
stop () (IteratorBase method), 77
stop () (SynchronizedMeasurements method), 116
stop () (TimeTaggerVirtual method), 64
stopServer () (TimeTagger method), 61
sync() (TimeTaggerBase method), 53
SynchronizedMeasurements (built-in class), 116
SynchronousControl (AccessMode attribute), 42

T

TagType (built-in class), 44

TDC time stamp, 121

tGetData (TimeTagStreamBuffer attribute), 109
time (Event attribute), 114
TimeDifferences (built-in class), 93
TimeDifferencesND (built-in class), 95
TimeTag (TagType attribute), 44
TimeTagger (built-in class), 54
TimeTaggerBase (built-in class), 49
TimeTaggerNetwork (built-in class), 65
TimeTaggerVirtual (built-in class), 63
TimeTagStream (built-in class), 108
TimeTagStreamBuffer (built-in class), 108
TriggerOnCountrate (built-in class), 74
tStart (TimeTagStreamBuffer attribute), 108

U

UNKNOWN (State attribute), 114

unregisterMeasurement ()
ments method), 116

UsageStatisticsStatus (built-in class), 44

(SynchronizedMeasure-

160

Index

Time Tagger User Manual, Release 1.2.3-local-build

W

waitForCompletion() (TimeTaggerVirtual method), 64
waitForFence() (TimeTaggerBase method), 52
waitUntilFinished() (IteratorBase method), 78

X

xtra_getAuxOut) (TimeTagger method), 61

xtra_getAuxOutSignalDutyCycle() (TimeTagger
method), 62

xtra_getClockAutoSelect() (TimeTagger method),
63

xtra_getClockSource() (TimeTagger method), 62

xtra_measureTriggerLevel () (TimeTagger method),
62

xtra_setAuxOut () (Timelagger method), 61

xtra_setAuxOutSignal O (TimeTagger method), 62

xtra_setClockAutoSelect() (TimeTagger method),
63

xtra_setClockOut) (TimeTagger method), 63

xtra_setClockSource() (Timelagger method), 62

Index 161

	Getting Started
	Web Application
	Python
	LabVIEW (via .NET)
	Matlab (wrapper for .NET)
	Wolfram Mathematica (via .NET)
	.NET
	C#
	C++

	Installation instructions
	Requirements
	Operating System
	Installation
	Web Application
	Programming Examples
	Linux

	Tutorials
	Confocal Fluorescence Microscope
	Time Tagger configuration
	Intensity scanning microscope
	Fluorescence Lifetime Microscope
	Alternative pixel trigger formats
	Pixel pulse width defines the integration time
	Pixel pulse indicates the pixel start
	FLIM with non-periodic pixel trigger
	Line pulse but no pixel pulses

	Remote Time Tagger with Python
	Sharing a Time Tagger with Network Time Tagger
	Remote control of a Time Tagger with Pyro
	Remote procedure call
	Initial setup
	Minimal example
	Creating the Time Tagger
	Measurements and virtual channels
	Working example
	What is next?

	Synchronizer
	Overview
	Requirements
	Cable connections
	Using an external reference clock

	Software and channel numbering
	Incomplete cable connections
	Buffer overflows

	Limitations
	Conditional filter
	Internal test signal

	Status LEDs and troubleshooting
	Synchronizer with only one Time Tagger
	Long term clock stability
	Absolute clock timestamps

	Hardware
	Input channels
	Electrical characteristics
	High Resolution Mode

	Data connection
	LEDs
	Time Tagger X
	Time Tagger Ultra and Time Tagger 20
	Additional LEDs on Time Tagger X and Time Tagger Ultra

	Test signal
	Virtual channels
	Synthetic input delay
	Synthetic dead time
	Conditional Filter
	Bin equilibration
	Overflows
	External Clock Input - Time Tagger Ultra and Time Tagger X only
	Synchronization signals - Time Tagger Ultra only
	General purpose IO (GPIO) - Time Tagger Ultra only
	General purpose IO (GPIO) - Time Tagger 20 only

	Software Overview
	Web application
	Precompiled libraries and high-level language bindings
	C++ API

	Application Programmer’s Interface
	Examples
	Measuring cross-correlation
	Using virtual channels
	Using multiple Time Taggers
	Using Time Tagger remotely

	The TimeTagger Library
	Units of measurement
	Channel numbers
	Unused channels
	Constants
	Enumerations
	Functions

	TimeTagger classes
	General Time Tagger features
	Time Tagger hardware
	The TimeTaggerVirtual class
	The TimeTaggerNetwork class
	Additional classes

	Virtual Channels
	Available virtual channels
	Common methods
	Combiner
	Coincidence
	Coincidences
	FrequencyMultiplier
	GatedChannel
	DelayedChannel
	ConstantFractionDiscriminator
	EventGenerator
	TriggerOnCountrate

	Measurement Classes
	Available measurement classes
	Common methods
	Event counting
	Countrate
	Counter
	CountBetweenMarkers

	Time histograms
	StartStop
	Histogram
	HistogramLogBins
	Histogram2D
	HistogramND
	Correlation
	TimeDifferences
	TimeDifferencesND

	Fluorescence-lifetime imaging (FLIM)
	Flim
	FlimFrameInfo
	FlimBase

	Frequency analysis
	FrequencyStability

	Time-tag-streaming
	TimeTagStream
	FileWriter
	FileReader
	Dump
	Scope
	Sampler

	Helper classes
	SynchronizedMeasurements

	Custom Measurements

	In Depth Guides
	Conditional Filter
	Example configurations
	One trigger and one filtered channel
	Multiple trigger-channels
	Multiple filtered channels
	Multiple trigger and filtered channels

	Understanding the filtering mechanism
	Terms
	Processing stages
	Consequences

	Setup of the Conditional Filter
	Control hardware delay compensation
	Disable the Conditional Filter

	Raw Time-Tag-Stream access
	Dumping and post-processing
	File Reader
	Virtual Time Tagger

	On-the-fly processing
	TimeTagStream - high-level, lower performance
	CustomMeasurement - low-level, higher performance
	CustomVirtualChannel - modify the time tag stream - C++ only
	IteratorBase - C++ only

	Synchronization of the Time Tagger pipeline

	Linux
	Supported distributions
	Installation
	Known issues
	Time Tagger with Python
	Time Tagger with C++
	General remark

	Frequently Asked Questions
	How to detect falling edges of a pulse?
	What value should I pass to an optional channel?
	Is it possible to use the same channel in multiple measurement classes?
	How do I choose a binwidth for a histogram?

	Usage Statistics Collection
	Contents of the usage statistics data
	Ways of control

	Revision History
	V2.12.0 - 01.09.2022
	V2.11.0 - 22.04.2022
	V2.10.6 - 16.03.2022
	V2.10.4 - 23.02.2022
	V2.10.2 - 31.12.2021
	V2.10.0 - 22.12.2021
	V2.9.0 - 07.06.2021
	V2.8.4 - 04.05.2021
	V2.8.2 - 26.04.2021
	V2.8.0 - 29.03.2021
	V2.7.6 - 26.04.2021
	V2.7.4 - 19.04.2021
	V2.7.2 - 22.12.2020
	V2.7.0 - 01.10.2020
	V2.6.10 - 07.09.2020
	V2.6.8 - 21.08.2020
	V2.6.6 - 10.07.2020
	V2.6.4 - 27.05.2020
	V2.6.2 - 10.03.2020
	V2.6.0 - 23.12.2019
	V2.4.4 - 29.07.2019
	V2.4.2 - 12.05.2019
	V2.4.0 - 10.04.2019
	V2.2.4 - 29.01.2019
	V2.2.2 - 13.11.2018
	V2.2.0 - 07.11.2018
	V2.1.6 - 17.05.2018
	V2.1.4 - 21.03.2018
	V2.1.2 - 14.03.2018
	V2.1.0 - 06.03.2018
	V2.0.4 - 01.02.2018
	V2.0.2 - 17.01.2018
	V2.0.0 - 14.12.2017
	V1.0.20 - 24.10.2017
	V1.0.6 - 16.03.2017
	V1.0.4 - 24.11.2016
	V1.0.2 - 28.07.2016
	V1.0.0
	Channel Number Schema 0 and 1

	Index

